The Earls sequence gives the starting position in the decimal digits of (or in general, any constant), not counting digits to the left of the decimal point, at which a string of copies of the number first occurs. The following table gives generalized Earls sequences for various constants, including .
constant | OEIS | sequence |
Apéry's constant | A229074 | 10, 57, 3938, 421, 41813, 1625571, 4903435, 99713909, ... |
Catalan's constant | A224819 | 2, 107, 1225, 596, 32187, 185043, 20444527, 92589355, 3487283621, ... |
Champernowne constant | A224896 | 1, 34, 56, 1222, 1555, 25554, 29998, 433330, 7988888882, 1101010101010, ... |
Copeland-Erdős constant | A224897 | 5, 113, 1181, 21670, 263423, 7815547, 35619942, 402720247, 450680638 |
e | A224828 | 2, 252, 1361, 11806, 210482, 9030286, 3548262, 141850388, 1290227011 |
Euler-Mascheroni constant | A224826 | 5, 139, 163, 10359, 86615, 193446, 236542, 6186099, 36151186 |
Glaisher-Kinkelin constant | A225763 | 7, 14, 2264, 1179, 411556, ... |
golden ratio | A224844 | 2, 62, 158, 1216, 72618, 2905357, 7446157, 41398949, 1574998166 |
Golomb-Dickman constant | A225242 | 28, 256, 1967, 387, ... |
Khinchin's constant | A224836 | 9, 42, 1799, 494, 5760, ... |
natural logarithm of 2 | A228242 | 4, 419, 2114, 3929, 38451, 716837, 6180096, 10680693, 2539803904 |
natural logarithm of 10 | A228243 | 20, 111, 56, 9041, 4767, 674596, 24611354, 64653957, 131278082 |
pi | A061073 | 1, 135, 1698, 54525, 24466, 252499, 3346228, 46663520, 564665206 |
Pythagoras's constant | A224871 | 2, 114, 1481, 3308, 72459, 226697, 969836, 119555442, 2971094743 |
Soldner's constant | A229071 | 3, 42, 178, 10013, 31567, ... |
Theodorus's constant | A224874 | 27, 215, 1651, 2279, 21640, 176497, 7728291, 77659477, 638679423 |
Note that the 20-digit sequence does not occur in the first digits of , nor in fact do any of the -digit sequences for any two-digit number with and (E. W. Weisstein, Jul. 20, 2013).