TOPICS
Search

Soldner's Constant Digits


Ramanujan calculated mu=1.45136380... (Hardy 1999, Le Lionnais 1983, Berndt 1994), while the correct value is

 mu=1.45136923488...

(OEIS A070769; Derbyshire 2004, p. 114). The first 10^7 decimal digits were computed by E. Weisstein on Oct. 7, 2013.

mu-constant primes occur for 4, 144, 227, 444, 19474, ... (OEIS A122422) decimal digits.

The Earls sequence (starting position of n copies of the digit n) for mu is given for n=1, 2, ... by 3, 42, 178, 10013, 31567, 600035, 1253449, ... (OEIS A229071).

The starting positions of the first occurrence of n=0, 1, 2, ... in the decimal expansion of mu (not including the initial 0 to the left of the decimal point) are 17, 1, 8, 5, 2, 3, 6, 34, 11, ... (OEIS A229201).

Scanning the decimal expansion of mu until all n-digit numbers have occurred, the last 1-, 2-, ... digit numbers appearing are 7, 465, 102, 5858, 48441, ... (OEIS A000000), which end at digits 34, 512, 7454, 92508, 1414058, ... (OEIS A000000).

The digit sequences 0123456789 and 9876543210 do not occur in the first 10^7 digits (E. Weisstein, Oct. 7, 2013).

It is not known if mu is normal, but the following table giving the counts of digits in the first 10^n terms shows that the decimal digits are very uniformly distributed up to at least 10^7.

d\nOEIS1010010^310^410^510^610^7
0A00000009116105310098100104999785
1A0000001710097098931002381000370
2A0000001910697910113100057999594
3A000000213109101210120999991001006
4A0000002109610191011899822999546
5A0000001151039949912999181001007
6A000000188910361006099971999430
7A000000069798810029100141997185
8A00000011510198898381000891001593
9A00000018839619819996611000484

See also

Soldner's Constant, Soldner's Constant Continued Fraction

Explore with Wolfram|Alpha

References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 123-124, 1994.Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 23 and 45, 1999.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 39, 1983.Sloane, N. J. A. Sequences A070769, A122422, A229071, A229201 in "The On-Line Encyclopedia of Integer Sequences."

Cite this as:

Weisstein, Eric W. "Soldner's Constant Digits." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SoldnersConstantDigits.html

Subject classifications