(OEIS A074962) is called the Glaisher-Kinkelin constant and is the derivative of the Riemann
zeta function (Kinkelin 1860; Jeffrey 1862; Glaisher 1877, 1878, 1893, 1894;
Voros 1987).
The constant is implemented as Glaisher,
and appears in a number of sums and integrals, especially those involving gamma
functions and zeta functions.
Almkvist, G. "Asymptotic Formulas and Generalized Dedekind Sums." Experim. Math.7, 343-356, 1998.Finch, S. R.
"Glaisher-Kinkelin Constant." §2.15 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 135-145,
2003.Glaisher, J. W. L. "On the Product ." Messenger Math.7, 43-47,
1878.Glaisher, J. W. L. "On Certain Numerical Products
in which the Exponents Depend Upon the Numbers." Messenger Math.23,
145-175, 1893.Glaisher, J. W. L. "On the Constant which
Occurs in the Formula for ." Messenger Math.24, 1-16,
1894.Guillera, J. and Sondow, J. "Double Integrals and Infinite
Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent."
16 June 2005 http://arxiv.org/abs/math.NT/0506319.Havil,
J. Gamma:
Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 88
and 113, 2003.Jeffrey, H. M. "On the Expansion of Powers of
the Trigonometrical Ratios in Terms of Series of Ascending Powers of the Variables."
Messenger Math.5, 91-108, 1862.Kinkelin. "Über
eine mit der Gammafunktion verwandte Transcendente und deren Anwendung auf die Integralrechnung."
J. reine angew. Math.57, 122-158, 1860.Sloane, N. J. A.
Sequences A074962, A087501,
A099791, A099792,
A115521, and A115522
in "The On-Line Encyclopedia of Integer Sequences."Voros,
A. "Spectral Functions, Special Functions and the Selberg Zeta Function."
Commun. Math. Phys.110, 439-465, 1987.