TOPICS
Search

Golden Ratio Digits


The golden ratio has decimal expansion

 phi=1.618033988749894848...

(OEIS A001622). It can be computed to 10^(10) digits of precision in 24 CPU-minutes on modern hardware and was computed to 10^(12) decimal digits by A. J. Yee on Jul. 8, 2010.

The Earls sequence (starting position of n copies of the digit n) for phi is given for n=1, 2, ... by 2, 62, 158, 1216, 72618, 2905357, 7446157, 41398949, 1574998166, ... (OEIS A224844).

The digit sequence 0123456789 does not occur in the first 10^(10) digits of phi, but 9876543210 does, starting at position 898007781 (E. Weisstein, Jul. 22, 2013).

Phi-primes, i.e., phi-constant primes occur for 7, 13, 255, 280, 97241, ... (OEIS A064119) decimal digits.

The starting positions of the first occurrence of n=0, 1, 2, ... in the decimal expansion of phi (including the initial 1 and counting it as the first digit) are 5, 1, 20, 6, 12, 23, 2, 11, 4, 8, 232, ... (OEIS A088577).

Scanning the decimal expansion of phi until all n-digit numbers have occurred, the last 1-, 2-, ... digit numbers appearing are 5, 55, 515, 0092, 67799, 290503, ... (OEIS A000000), which end at digits 23, 770, 5819, 93910, 1154766, 13192647, ... (OEIS A000000).

It is not known if phi is normal, but the following table giving the counts of digits in the first 10^n terms shows that the decimal digits are very uniformly distributed up to at least 10^9.

d\nOEIS1010010^310^410^510^610^710^810^910^(10)
0A00000011110010209986998051001143100033321000078401000031042
1A00000019105106299639999310001181000025599999864999990982
2A0000000111169949950995291000776100021161000021061000005392
3A000000298810391007999833999794999918499979352999978183
4A0000000129297610041100151999367999879799995481999952470
5A0000000584988100161000679997259996151999999341000032985
6A00000019104918997510032899945599961491000042081000014191
7A00000011011310259988100160100085299975241000182371000023870
8A0000003151059871000810023610000591000541999995223999976728
9A00000019939919994998989987111000107399997755999994157

See also

Constant Digit Scanning, Constant Primes, Golden Ratio

Explore with Wolfram|Alpha

References

Sloane, N. J. A. Sequences A/M4046, A064119, A088577, and A224844 in "The On-Line Encyclopedia of Integer Sequences."Yee, A. J. "y-cruncher - A Multi-Threaded Pi-Program." http://www.numberworld.org/y-cruncher/.

Cite this as:

Weisstein, Eric W. "Golden Ratio Digits." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GoldenRatioDigits.html

Subject classifications