TOPICS
Search

Constant Digit Scanning


Scan the decimal expansion of a constant (including any digits to the left of the decimal point) until all n-digit strings have been seen (including 0-padded strings). The following table then gives the number of digits that must be scanned to encounter all n=1, 2, ...-digit strings (where "number of digits" means the ending-not starting-digit of an n-digit string) together with the last n-digit string encountered.

constantOEISsequence
Apéry's constantA03690623, 457, 7839, 83054, 1256587, 13881136, 166670757, ...
A0369027, 89, 211, 2861, 43983, 29270, 8261623, ...
Catalan's constantA00000032, 716, 7700, 86482, 1143572, ...
A0000008, 45, 529, 2679, 24200, ...
Champernowne constantA07229011, 192, 2893, 38894, 488895, 5888896, 68888897, 788888898, 8888888899, ...
Copeland-Erdős constantA00000048, 934, 24437, 366399, 4910479, 49672582, ...
A0000000, 84, 504, 8580, 07010, 088880, ...
eA03690421, 372, 8092, 102128, 1061613, 12108841, 198150341, 1929504534, ...
A0369006, 12, 548, 1769, 92994, 513311, 1934715, 56891305, ...
Euler-Mascheroni constantA00000016, 658, 6600, 91101, 1384372, ...
A0000008, 18, 346, 2778, 84514, ...
Glaisher-Kinkelin constantA00000022, 495, 7233, ...
A0000005, 98, 478, ...
golden ratioA00000023, 770, 5819, 93910, 1154766, 13192647, ...
A0000005, 55, 515, 0092, 67799, 290503, ...
Golomb-Dickman constantA00000028, 587, 6322, ...
A0000001, 33, 821, ...
Khinchin's constantA00000023, 499, 8254, ...
A0000007, 43, 782, ...
natural logarithm of 2A03690522, 444, 7655, 98370, 1107795, 12983306, ...
A0369012, 98, 604, 1155, 46847, 175403, ...
natural logarithm of 10A22912422, 701, 7486, 88092, 1189434, 13426407, ...
A2291267, 38, 351, 8493, 33058, 362945, ...
piA08059733, 607, 8556, 99850, 1369565, 14118313, 166100507, 1816743913, 22445207407, 241641121049, 2512258603208, ...
A0325100, 68, 483, 6716, 33394, 569540, 1075656, 36432643, 172484538, 5918289042, 56377726040, ...
Pythagoras's constantA00000019, 420, 8326, 94388, 1256460, 13043524, ...
A0000008, 81, 748, 8505, 30103, 489568, ...
Soldner's constantA00000034, 512, 7454, 92508, ...
A0000007, 46, 102, 5858, ...
Theodorus's constantA00000023, 378, 7862, 77437, 1237533, 16362668, ...
A0000004, 91, 184, 5566, 86134, 35343, ...

The starting positions of the first occurrence of n=0, 1, 2, ... in the decimal expansion of a number of constants are summarized in the table below, where any initial 0 to the left of the decimal point is ignored non any nonzero initial digits are counted as the "first" digit.

constantOEISfirst occurrence of 0, 1, 2, ...
Apéry's constantA2291873, 1, 2, 10, 16, 6, 7, 23, 18, 8, ...
Catalan's constantA10007916, 2, 13, 24, 9, 3, 5, 11, 32, 1, ...
Champernowne constantA22918611, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
Copeland-Erdős constantA22919048, 5, 1, 2, 21, 3, 31, 4, 41, 12, ...
eA08857614, 3, 1, 18, 11, 12, 21, 2, 4, 13, ...
Euler-Mascheroni constantA22919211, 5, 4, 14, 9, 1, 7, 2, 16, 10, 36, ...
Glaisher-Kinkelin constantA22919312, 1, 2, 18, 5, 22, 14, 7, 3, 10, 11, ...
Golomb-Dickman constantA22919515, 28, 2, 4, 3, 10, 1, 17, 8, 6, 28, ...
golden ratioA0885775, 1, 20, 6, 12, 23, 2, 11, 4, 8, 232, ...
Khinchin's constantA2291968, 10, 1, 14, 5, 4, 2, 23, 3, 22, 10, ...
natural logarithm of 2A1000779, 4, 22, 3, 5, 10, 1, 6, 8, 2, 108, ...
natural logarithm of 10A2291973, 21, 1, 2, 13, 5, 17, 22, 6, 9, 41, ...
piA03244533, 2, 7, 1, 3, 5, 8, 14, 12, 6, 50, ...
Pythagoras's constantA22919914, 1, 5, 7, 2, 8, 9, 12, 19, 15, 77, ...
Soldner's constantA22920117, 1, 8, 5, 2, 3, 6, 34, 11, 7, 16, ...
Theodorus's constantA2292005, 1, 4, 3, 23, 6, 12, 2, 8, 18, 48, ...

See also

Constant, Constant Primes

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Sloane, N. J. A. Sequences A032445, A032510, A036900, A036901, A036902, A036904, A036905, A036906, A072290, A080597, A088576, A088577, A100077, A100079, A229124, A229126, A229186, A229187, A229190, A229192, A229193, A229195, A229197, A229199, A229200, and A229201 in "The On-Line Encyclopedia of Integer Sequences."

Cite this as:

Weisstein, Eric W. "Constant Digit Scanning." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ConstantDigitScanning.html

Subject classifications