TOPICS
Search

Apéry's Constant


Apéry's constant is defined by

 zeta(3)=1.2020569...,
(1)

(OEIS A002117) where zeta(z) is the Riemann zeta function. Apéry (1979) proved that zeta(3) is irrational, although it is not known if it is transcendental. Sorokin (1994) and Nesterenko (1996) subsequently constructed independent proofs for the irrationality of zeta(3) (Hata 2000). Apéry's proof involved use of the continued fraction

 6/(zeta(3))=5+K_(n=1)^infty(-n^6)/(17[n^3+(n+1)^3]-12(2n+1))
(2)

(Raayoni 2021, Elimelech et al. 2023).

zeta(3) arises naturally in a number of physical problems, including in the second- and third-order terms of the electron's gyromagnetic ratio, computed using quantum electrodynamics.

The following table summarizes progress in computing upper bounds on the irrationality measure for zeta(3). Here, the exact values for mu_4 is given by

mu_4=1+(4ln(sqrt(2)+1)+3)/(4ln(sqrt(2)+1)-3)
(3)
 approx 13.4178202
(4)

(Hata 2000).

mu_nupper boundreference
15.513891Rhin and Viola (2001)
28.830284Hata (1990)
312.74359Dvornicich and Viola (1987)
413.41782Apéry (1979), Sorokin (1994), Nesterenko (1996), Prévost (1996)

Beukers (1979) reproduced Apéry's rational approximation to zeta(3) using the triple integral of the form

 int_0^1int_0^1int_0^1(L_n(x)L_n(y))/(1-(1-xy)u)dxdydu,
(5)

where L_n(x) is a Legendre polynomial. Beukers's integral is given by

 zeta(3)=-1/2int_0^1int_0^1(ln(xy))/((1-xy))dxdy,
(6)

a result that is a special case of what is known as Hadjicostas's formula.

This integral is closely related to zeta(3) using the curious identity

int_0^1int_0^1int_0^1(x^ry^s)/(1-(1-xy)u)dxdydu={2zeta(3)-sum_(l=1)^(r)2/(l^3) for r=s; sum_(l=min(r,s)+1)^(max(r,s))1/(|r-s|l^2) for r!=s
(7)
={2zeta(3)-2H_r^((3)) for r=s; (psi_1(1+min(r,s))-psi_1(1+max(r,s)))/(|r-s|) for r!=s,
(8)

where H_r^((n)) is a generalized harmonic number and psi_k(x) is a polygamma function (Hata 2000).

Sums related to zeta(3) include

zeta(3)=5/2sum_(n=1)^(infty)((-1)^(n-1))/(n^3(2n; n))
(9)
=5/2sum_(k=1)^(infty)((-1)^(k+1)(k!)^2)/((2k)!k^3)
(10)

(used by Apéry), the related sum

 zeta(3)=2/3(ln2)^3+4sum_(k=1)^infty((-1)^(k+1))/(k^32^k(2k; k))
(11)

as first proved by G. Huvent in 2002 (Gourevitch) and rediscovered by B. Cloitre (pers. comm., Oct. 8, 2004), and

sum_(k=0)^(infty)1/((2k+1)^3)=7/8zeta(3)
(12)
=lambda(3)
(13)
sum_(k=0)^(infty)1/((3k+1)^3)=(2pi^3)/(81sqrt(3))+(13)/(27)zeta(3)
(14)
sum_(k=0)^(infty)1/((4k+1)^3)=(pi^3)/(64)+7/(16)zeta(3)
(15)
sum_(k=0)^(infty)1/((6k+1)^3)=(pi^3)/(36sqrt(3))+(91)/(216)zeta(3),
(16)

where lambda(z) is the Dirichlet lambda function. The above equations are special cases of a general result due to Ramanujan (Berndt 1985).

Apéry's constant is given by an infinite family BBP-type formulas of the form

zeta(3)=4/3sum_(k=0)^(infty)((-1)^k)/((1+k)^3)
(17)
=4/3sum_(k=0)^(infty)(-1)^k[1/((3k+1)^3)-1/((3k+2)^3)+1/((3k+3)^3)]
(18)
=3/2sum_(k=0)^(infty)(-1)^k[1/((3k+1)^3)-1/((3k+2)^3)-2/((3k+3)^3)]
(19)
=4/3sum_(k=0)^(infty)(-1)^k[1/((5k+1)^3)-1/((5k+2)^3)+1/((5k+3)^3)-1/((5k+4)^3)+1/((5k+5)^3)]
(20)
=1/(15)sum_(k=0)^(infty)(-1)^k[(21)/((5k+1)^3)-(21)/((5k+2)^3)+(21)/((5k+3)^3)-(21)/((5k+4)^3)-(104)/((5k+5)^3)]
(21)
=4/3sum_(k=0)^(infty)(-1)^k[1/((7k+1)^3)-1/((7k+2)^3)+1/((7k+3)^3)-1/((7k+4)^3)+1/((7k+5)^3)-1/((7k+6)^3)+1/((7k+7)^3)]
(22)
=1/(30)sum_(k=0)^(infty)(-1)^k[(41)/((7k+1)^3)-(41)/((7k+2)^3)+(41)/((7k+3)^3)-(41)/((7k+4)^3)+(41)/((7k+5)^3)-(41)/((7k+6)^3)+(302)/((7k+7)^3)]
(23)

(E. W. Weisstein, Feb. 25, 2006), and the amazing two special sums

zeta(3)=1/(672)sum_(k=0)^(infty)1/(4096^k)[(2048)/((24k+1)^3)-(11264)/((24k+2)^3)-(1024)/((24k+3)^3)+(11776)/((24k+4)^3)-(512)/((24k+5)^3)+(4096)/((24k+6)^3)+(256)/((24k+7)^3)+(3456)/((24k+8)^3)+(128)/((24k+9)^3)-(704)/((24k+10)^3)-(64)/((24k+11)^3)-(128)/((24k+12)^3)-(32)/((24k+13)^3)-(176)/((24k+14)^3)+(16)/((24k+15)^3)+(216)/((24k+16)^3)+8/((24k+17)^3)+(64)/((24k+18)^3)-4/((24k+19)^3)+(46)/((24k+20)^3)-2/((24k+21)^3)-(11)/((24k+22)^3)+1/((24k+23)^3)]
(24)
=9/(224)sum_(k=0)^(infty)1/(4096^k)[(1024)/((24k+2)^3)-(3072)/((24k+3)^3)+(512)/((24k+4)^3)+(1024)/((24k+6)^3)+(1152)/((24k+8)^3)+(384)/((24k+9)^3)+(64)/((24k+10)^3)+(128)/((24k+12)^3)+(16)/((24k+14)^3)+(48)/((24k+15)^3)+(72)/((24k+16)^3)+(16)/((24k+18)^3)+2/((24k+20)^3)-6/((24k+21)^3)+1/((24k+22)^3)].
(25)

Determining a sum of this type is given as an exercise by Bailey et al. (2007, p. 225; typo corrected).

A beautiful double series for zeta(3) is given by

 zeta(3)=1/3sum_(i=1)^inftysum_(j=1)^infty((i-1)!(j-1)!)/((i+j)!)H_(i+j),
(26)

where H_n is a harmonic number (O. Oloa, pers. comm., Dec. 30, 2005).

Apéry's proof relied on showing that the sum

 a(n)=sum_(k=0)^n(n; k)^2(n+k; k)^2,
(27)

where (n; k) is a binomial coefficient, satisfies the recurrence relation

 n^3a_n-(34n^3-51n^2+27n-5)a_(n-1)+(n-1)^3a_(n-2)=0
(28)

(van der Poorten 1979, Zeilberger 1991). The characteristic polynomial x^2-34x+1 has roots (1+/-sqrt(2))^4, so

 lim_(n->infty)(a_(n+1))/(a_n)=(1+sqrt(2))^4
(29)

is irrational and a_n cannot satisfy a two-term recurrence (Jin and Dickinson 2000).

Apéry's constant is also given by

 zeta(3)=8sum_(n=1)^infty(S_(n,2))/(n!n),
(30)

where S_(n,m) is a Stirling number of the first kind. This can be rewritten as

zeta(3)=1/2sum_(n=1)^(infty)1/(n^2)(1+1/2+...+1/n)
(31)
=1/2sum_(n=1)^(infty)(H_n)/(n^2),
(32)

where H_n is the nth harmonic number (Castellanos 1988).

Amdeberhan (1996) used Wilf-Zeilberger pairs (F,G) with

 F(n,k)=((-1)^kk!^2(sn-k-1)!)/((sn+k+1)!(k+1)),
(33)

s=1 to obtain

 zeta(3)=5/2sum_(n=1)^infty(-1)^(n-1)1/((2n; n)n^3).
(34)

For s=2,

 zeta(3)=1/4sum_(n=1)^infty(-1)^(n-1)(56n^2-32n+5)/((2n-1)^2)1/((3n; n)(2n; n)n^3)
(35)

(Boros and Moll 2004, p. 236; Amdeberhan 1996), and for s=3,

 zeta(3)=sum_(n=0)^infty((-1)^n)/(72(4n; n)(3n; n))(5265n^4+13878n^3+13761n^2+6120n+1040)/((4n+1)(4n+3)(n+1)(3n+1)^2(3n+2)^2)
(36)

(Amdeberhan 1996). The corresponding G(n,k) for s=1 and 2 are

 G(n,k)=(2(-1)^kk!^2(n-k)!)/((n+k+1)!(n+1)^2)
(37)

and

 G(n,k)=((-1)^kk!^2(2n-k)!(3+4n)(4n^2+6n+k+3))/(2(2n+k+2)!(n+1)^2(2n+1)^2).
(38)

Amdeberhan and Zeilberger (1997) used a Wilf-Zeilberger pair identity with

 F(n,k)=(-1)^k(n!^6(2n-k-1)!(k!)^3)/(2(n+k+1)!^2((2n)!)^3),
(39)

s=1, and t=1, to obtain the rapidly converging series

 zeta(3)=sum_(n=0)^infty(-1)^n((n!)^(10)(205n^2+250n+77))/(64((2n+1)!)^5),
(40)

which was used to compute (3) to 1 million decimal digits. Campbell (2022) used the WZ method to obtain

 zeta(3)=-2/7-1/(448)sum_(n=1)^infty((-2^(12))^n(7168n^5-1664n^4-1328n^3+212n^2+49n-9))/(n^4(2n-1)(3n+1)(4n+1)(2n; n)(3n; n)(4n; 2n)^3).
(41)

Integrals for zeta(3) include

zeta(3)=1/2int_0^infty(t^2)/(e^t-1)dt
(42)
=8/7[1/4pi^2ln2+2int_0^(pi/2)xln(sinx)dx].
(43)

Gosper (1990) gave

 zeta(3)=1/4sum_(k=1)^infty(30k-11)/((2k-1)k^3(2k; k)^2).
(44)

A continued fraction involving Apéry's constant is

 6/(zeta(3))=5-(1^6)/(117-)(2^6)/(535-)...(n^6)/(34n^3+51n^2+27n+5-)...
(45)

(Apéry 1979, Le Lionnais 1983).

zeta(3) is related to the Glaisher-Kinkelin constant A and polygamma function psi_n(z) by

 zeta(3)=2/3pi^2[12psi_(-4)(1)-6lnA-ln(2pi)].
(46)

Gosper (1996) expressed zeta(3) as the matrix product

 lim_(N->infty)product_(n=1)^NM_n=[0 zeta(3); 0 1],
(47)

where

 M_n=[((n+1)^4)/(4096(n+5/4)^2(n+7/4)^2) (24570n^4+64161n^3+62152n^2+26427n+4154)/(31104(n+1/3)(n+1/2)(n+2/3)); 0 1]
(48)

which gives 12 bits per term. The first few terms are

M_1=[1/(19600) (2077)/(1728); 0 1]
(49)
M_2=[1/(9801) (7561)/(4320); 0 1]
(50)
M_3=[9/(67600) (50501)/(20160); 0 1],
(51)

which gives

 zeta(3) approx (423203577229)/(352066176000)=1.20205690315732....
(52)

Given three integers chosen at random, the probability that no common factor will divide them all is

 [zeta(3)]^(-1) approx 1.20206^(-1) approx 0.831907.
(53)

See also

Apéry's Constant Approximations, Apéry's Constant Continued Fraction, Apéry's Constant Digits, Hadjicostas's Formula, Planck's Radiation Function, Riemann Zeta Function, Riemann Zeta Function zeta(2), Trilogarithm, Wilf-Zeilberger Pair

Explore with Wolfram|Alpha

References

Amdeberhan, T. "Faster and Faster Convergent Series for zeta(3)." Electronic J. Combinatorics 3, No. 1, R13, 1-2, 1996. http://www.combinatorics.org/Volume_3/Abstracts/v3i1r13.html.Amdeberhan, T. and Zeilberger, D. "Hypergeometric Series Acceleration via the WZ Method." Electronic J. Combinatorics 4, No. 2, R3, 1-3, 1997. http://www.combinatorics.org/Volume_4/Abstracts/v4i2r3.html. Also available at http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/accel.html.Apéry, R. "Irrationalité de zeta(2) et zeta(3)." Astérisque 61, 11-13, 1979.Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.Preprint dated Feb. 22, 2003 available at http://www.nersc.gov/~dhbailey/dhbpapers/bcnormal.pdf.Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, 1985.Beukers, F. "A Note on the Irrationality of zeta(2) and zeta(3)." Bull. London Math. Soc. 11, 268-272, 1979.Beukers, F. "Another Congruence for the Apéry Numbers." J. Number Th. 25, 201-210, 1987.Boros, G. and Moll, V. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, 2004.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.Campbell, J. M. "WZ Proofs of Identities From Chu and Kiliç, With Applications." Appl. Math. E-Notes, 22, 354-361, 2022.Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.Conway, J. H. and Guy, R. K. "The Great Enigma." In The Book of Numbers. New York: Springer-Verlag, pp. 261-262, 1996.Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 76 and 371, 2004.Dvornicich, R. and Viola, C. "Some Remarks on Beukers' Integrals." In Number Theory, Colloq. Math. Soc. János Bolyai, Vol. 51. Amsterdam, Netherlands: North-Holland, pp. 637-657, 1987.Elimelech, R.; David, O.; De la Cruz Mengual, C.; Kalisch, R.; Berndt, W.; Shalyt, M.; Silberstein, M.; Hadad, Y.; and Kaminer, I. "Algorithm-Assisted Discovery of an Intrinsic Order Among Mathematical Constants." 22 Aug 2023. https://arxiv.org/abs/2308.11829.Ewell, J. A. "A New Series Representation for zeta(3)." Amer. Math. Monthly 97, 219-220, 1990.Finch, S. R. "Apéry's Constant." §1.6 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 40-53, 2003.Gosper, R. W. "Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics." In Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990.Gosper, R. W. "Zeta(3) to 250000 digits." math-fun@cs.arizona.edu posting, Sept. 1, 1996.Gourevitch, P. "L'univers de pi." http://www.pi314.net/hypergse11.php.Gutnik, L. A. "On the Irrationality of Some Quantities Containing zeta(3)." Acta Arith. 42, 255-264, 1983. English translation in Amer. Math. Soc. Transl. 140, 45-55, 1988.Haible, B. and Papanikolaou, T. "Fast Multiprecision Evaluation of Series of Rational Numbers." Technical Report TI-97-7. Darmstadt, Germany: Darmstadt University of Technology, Apr. 1997.Hata, M. "A New Irrationality Measure for zeta(3)." Acta Arith. 92, 47-57, 2000.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 42, 2003.Huvent, G. "Formules d'ordre supérieur." Pi314.net, 2002. http://s146372241.onlinehome.fr/web/pi314.net/hypergse11.php#x13-107002r480.Huylebrouck, D. "Similarities in Irrationality Proofs for pi, ln2, zeta(2), and zeta(3)." Amer. Math. Monthly 108, 222-231, 2001.Jin, Y. and Dickinson, H. "Apéry Sequences and Legendre Transforms." J. Austral. Math. Soc. Ser. A 68, 349-356, 2000.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 36, 1983.Nesterenko, Yu. V. "A Few Remarks on zeta(3)." Mat. Zametki 59, 865-880, 1996. English translation in Math. Notes 59, 625-636, 1996.Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.Prévost, M. "A New Proof of the Irrationality of zeta(2) and zeta(3) using Padé Approximants." J. Comput. Appl. Math. 67, 219-235, 1996.Raayoni, G; Gottlieb, S.; Manor, Y.; Pisha, G.; Harris, Y.; Mendlovic, U.; Haviv, D.; Hadad, Y.; and Kaminer, I. "Generating Conjectures on Fundamental Constants With the Ramanujan Machine." Nature 590, 67-73, 2021.Rhin, G. and Viola, C. "The Group Structure for zeta(3)." Acta Arith. 97, 269-293, 2001.Sloane, N. J. A. Sequence A002117/M0020 in "The On-Line Encyclopedia of Integer Sequences."Sorokin, V. N. "Hermite-Padé Approximations for Nikishin Systems and the Irrationality of zeta(3)." Uspekhi Mat. Nauk 49, 167-168, 1994. English translation in Russian Math. Surveys 49, 176-177, 1994.Srivastava, H. M. "Some Simple Algorithms for the Evaluations and Representations of the Riemann Zeta Function at Positive Integer Arguments." J. Math. Anal. Appl. 246, 331-351, 2000.van der Poorten, A. "A Proof that Euler Missed... Apéry's Proof of the Irrationality of zeta(3)." Math. Intel. 1, 196-203, 1979.Wedeniwski, S. "128000026 Digits of Zeta(3)." http://pi.lacim.uqam.ca/piDATA/Zeta3.txt.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 33, 1986.Zeilberger, D. "The Method of Creative Telescoping." J. Symb. Comput. 11, 195-204, 1991.

Referenced on Wolfram|Alpha

Apéry's Constant

Cite this as:

Weisstein, Eric W. "Apéry's Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AperysConstant.html

Subject classifications