Based on methods developer in collaboration with M. Leclert, Catalan (1865) computed the constant
(OEIS A006752) now known as Catalans' constant to 9 decimals. In 1867, M. Bresse subsequently computed to 24 decimal places using a technique from Kummer. Glaisher evaluated to 20 (Glaisher 1877) and subsequently 32 decimal digits (Glaisher 1913). Catalan's constant was computed to decimal digits by A. Roberts on Dec. 13, 2010 (Yee).
The Earls sequence (starting position of copies of the digit ) for Catalan's constant is given for , 2, ... by 2, 107, 1225, 596, 32187, 185043, 20444527, 92589355, 3487283621, ... (OEIS A224819).
-constant primes occur for 52, 276, 25477, ... (OEIS A118328) digits.
It is not known if is normal, but the following table giving the counts of digits in the first terms shows that the decimal digits are very uniformly distributed up to at least .
OEIS | 10 | 100 | ||||||||
0 | A224615 | 0 | 6 | 98 | 976 | 9828 | 99620 | 999784 | 9998686 | 99996067 |
1 | A224616 | 2 | 18 | 94 | 1039 | 9832 | 99697 | 1000293 | 10003813 | 100006305 |
2 | A224696 | 0 | 10 | 93 | 980 | 10078 | 100168 | 1001789 | 10005122 | 100000806 |
3 | A224706 | 0 | 7 | 104 | 1014 | 9859 | 99580 | 999672 | 9995676 | 100001483 |
4 | A224717 | 1 | 11 | 107 | 961 | 10051 | 100074 | 1000165 | 9995377 | 100001871 |
5 | A224774 | 3 | 10 | 89 | 1003 | 10062 | 100053 | 999965 | 9999309 | 100000777 |
6 | A224775 | 1 | 12 | 78 | 985 | 9986 | 100201 | 998712 | 10000674 | 99998816 |
7 | A224816 | 0 | 11 | 124 | 1032 | 10028 | 100083 | 1000510 | 10003863 | 100000576 |
8 | A224817 | 0 | 3 | 102 | 1058 | 10192 | 100352 | 999298 | 9997437 | 100000863 |
9 | A224818 | 3 | 12 | 111 | 952 | 10084 | 100172 | 999812 | 10000043 | 99992436 |
The digits 0123456789 do not occur in the first decimal digits of , but 9876543210 does (once), starting at position 2748123761 (E. Weisstein, Aug. 7, 2013).