TOPICS
Search

Catalan's Constant Digits


Based on methods developer in collaboration with M. Leclert, Catalan (1865) computed the constant

 K=0.915965594177...

(OEIS A006752) now known as Catalans' constant to 9 decimals. In 1867, M. Bresse subsequently computed K to 24 decimal places using a technique from Kummer. Glaisher evaluated K to 20 (Glaisher 1877) and subsequently 32 decimal digits (Glaisher 1913). Catalan's constant was computed to 5×10^(10) decimal digits by A. Roberts on Dec. 13, 2010 (Yee).

The Earls sequence (starting position of n copies of the digit n) for Catalan's constant is given for n=1, 2, ... by 2, 107, 1225, 596, 32187, 185043, 20444527, 92589355, 3487283621, ... (OEIS A224819).

K-constant primes occur for 52, 276, 25477, ... (OEIS A118328) digits.

It is not known if K is normal, but the following table giving the counts of digits in the first 10^n terms shows that the decimal digits are very uniformly distributed up to at least 10^9.

d\nOEIS1010010^310^410^510^610^710^810^9
0A2246150698976982899620999784999868699996067
1A224616218941039983299697100029310003813100006305
2A2246960109398010078100168100178910005122100000806
3A2247060710410149859995809996729995676100001483
4A2247171111079611005110007410001659995377100001871
5A224774310891003100621000539999659999309100000777
6A2247751127898599861002019987121000067499998816
7A224816011124103210028100083100051010003863100000576
8A224817031021058101921003529992989997437100000863
9A224818312111952100841001729998121000004399992436

The digits 0123456789 do not occur in the first 5×10^9 decimal digits of K, but 9876543210 does (once), starting at position 2748123761 (E. Weisstein, Aug. 7, 2013).


See also

Catalan's Constant, Catalan's Constant Continued Fraction, Constant Digit Scanning, Constant Primes, Earls Sequence

Explore with Wolfram|Alpha

References

Glaisher, J. W. L. "On a Numerical Continued Product." Messenger Math. 6, 71-76, 1877.Glaisher, J. W. L. "Numerical Values of the Series 1-1/3^n+1/5^n-1/7^n+1/9^n-&c for n=2, 4, 6." Messenger Math. 42, 35-58, 1913.Sloane, N. J. A. Sequences A118328 and A224819 in "The On-Line Encyclopedia of Integer Sequences."Yee, A. J. "y-cruncher - A Multi-Threaded Pi-Program." http://www.numberworld.org/y-cruncher/.

Cite this as:

Weisstein, Eric W. "Catalan's Constant Digits." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CatalansConstantDigits.html

Subject classifications