TOPICS
Search

Catalan Solid


The dual polyhedra of the Archimedean solids, given in the following table. They are known as Catalan solids in honor of the Belgian mathematician who first published them in 1862 (Wenninger 1983, p. 1).

Here are the Archimedean duals (Pearce 1978, Holden 1991) displayed in the order listed above (left to right, then continuing to the next row).

ArchimedeanDual01
ArchimedeanDual02
ArchimedeanDual03
ArchimedeanDual04
ArchimedeanDual05
ArchimedeanDual06
ArchimedeanDual07
ArchimedeanDual08
ArchimedeanDual09
ArchimedeanDual10
ArchimedeanDual11
ArchimedeanDual12
ArchimedeanDual13

Here are the Archimedean solids paired with the corresponding Catalan solids.

DualsArchimedeanSolids1
DualsArchimedeanSolids2

See also

Archimedean Dual, Archimedean Solid, Dual Polyhedron, Semiregular Polyhedron

Explore with Wolfram|Alpha

References

Catalan, E. "Mémoire sur la Théorie des Polyèdres." J. l'École Polytechnique (Paris) 41, 1-71, 1865.Holden, A. Shapes, Space, and Symmetry. New York: Dover, 1991.Pearce, P. Structure in Nature Is a Strategy for Design. Cambridge, MA: MIT Press, 1978.Pedagoguery Software. Poly. http://www.peda.com/poly/.Webb, R. "Archimedean Solids and Catalan Solids." http://www.software3d.com/Archimedean.html.Wenninger, M. J. Dual Models. Cambridge, England: Cambridge University Press, 1983.

Referenced on Wolfram|Alpha

Catalan Solid

Cite this as:

Weisstein, Eric W. "Catalan Solid." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CatalanSolid.html

Subject classifications