An alternative definition is given by absorbing the coefficient of into the constant,
(6)
(e.g., Hardy 1912, Kluyver 1927).
The Stieltjes constants are also given by
(7)
Plots of the values of the Stieltjes constants as a function of are illustrated above (Kreminski). The first few numerical
values are given in the following table.
Briggs (1955-1956) proved that there infinitely many of each sign. The signs of
for ,
1, ... are 1, ,
,
1, 1, 1, ,
,
,
,
... (OEIS A114523), and the run lengths of
consecutive signs are 1, 2, 3, 4, 3, 4, 5, 4, 5, 5, 5, ... (OEIS A114524).
A plot of run lengths is shown above.
Berndt (1972) gave upper bounds of
(8)
However, these bounds are extremely weak. A stronger bound is given by
Kluyver (1927) gave similar series for valid for all ,
(12)
where
is a Bernoulli polynomial. However, this
series converges extremely slowly, requiring more than terms to get two digits of and many more for higher order .
can also be expressed as a single sum using
(13)
also appears in the asymptotic expansion of the sum
(14)
where
was called
and given incorrectly by Ellision and Mendès-France (1975) (and the error
was subsequently reproduced by Le Lionnais 1983, p. 47). The exact form of (14) is given by
(15)
where
is a harmonic number and is a generalized Stieltjes constant.
A set of constants related to is
(16)
(Sitaramachandrarao 1986, Lehmer 1988).
The Stieltjes constants also satisfy the beautiful sum
Berndt, B. C. "On the Hurwitz Zeta-Function." Rocky Mountain J. Math.2, 151-157, 1972.Bohman, J. and
Fröberg, C.-E. "The Stieltjes Function--Definitions and Properties."
Math. Comput.51, 281-289, 1988.Briggs, W. E. "Some
Constants Associated with the Riemann Zeta-Function." Mich. Math. J.3,
117-121, 1955-1956.Coffey, M. W. "New Results on the Stieltjes
Constants: Asymptotic and Exact Evaluation." J. Math. Anal. Appl.317,
603-612, 2006.Coffey, M. W. "New Summation Relations for the
Stieltjes Constants." Proc. Roy. Soc. A462, 2563-2573, 2006.Ellison,
W. J. and Mendès-France, M. Les
nombres premiers. Paris: Hermann, 1975.Finch, S. R. "Stieltjes
Constants." §2.21 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 166-171,
2003.Hardy, G. H. "Note on Dr. Vacca's Series for ." Quart. J. Pure Appl. Math.43, 215-216,
1912.Hardy, G. H. and Wright, E. M. "The Behavior of
when ."
§17.3 in An
Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon
Press, pp. 246-247, 1979.Havil, J. Gamma:
Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Kluyver,
J. C. "On Certain Series of Mr. Hardy." Quart. J. Pure Appl. Math.50,
185-192, 1927.Knopfmacher, J. "Generalised Euler Constants."
Proc. Edinburgh Math. Soc.21, 25-32, 1978.Kreminski,
R. "Newton-Cotes Integration for Approximating Stieltjes (Generalized Euler)
Constants." Math. Comput.72, 1379-1397, 2003.Kreminski,
R. "This Site Will Archive Some Stieltjes-Related Computational Work..."
http://www.tamu-commerce.edu/math/FACULTY/KREMIN/stieltjesrelated/.Kreminski,
R. "This Page Displays Work in Progress by Rick Kreminski." http://www.tamu-commerce.edu/math/FACULTY/KREMIN/stieltjes/stieltjestestpage.html.Kreminski,
R. "Gammas 1 to 12 to 6900 Digits." http://www.tamu-commerce.edu/math/FACULTY/KREMIN/stieltjesrelated/gammas1to12/.Lammel,
E. "Ein Beweis dass die Riemannsche Zetafunktion is keine Nullstelle besitzt." Univ. Nac. Tucmán
Rev. Ser. A16, 209-217, 1966.Le Lionnais, F. Les
nombres remarquables. Paris: Hermann, p. 47, 1983.Lehmer,
D. H. "The Sum of Like Powers of the Zeros of the Riemann Zeta Function."
Math. Comput.50, 265-273, 1988.Liang, J. J. Y.
and Todd, J. "The Stieltjes Constants." J. Res. Nat. Bur. Standards--Math.
Sci.76B, 161-178, 1972.Matsuoka, Y. "Generalized Euler
Constants Associated with the Riemann Zeta Function." In Number Theory and
Combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984). Singapore: World
Scientific, pp. 279-295, 1985.Plouffe, S. "Stieltjes Constants
from 0 to 78, to 256 Digits Each." http://pi.lacim.uqam.ca/piDATA/stieltjesgamma.txt.Sitaramachandrarao,
R. "Maclaurin Coefficients of the Riemann Zeta Function." Abstracts
Amer. Math. Soc.7, 280, 1986.Sloane, N. J. A.
Sequences A001620/M3755, A082633,
A086279, A086280,
A086281, A086282,
A114523, and A114524
in "The On-Line Encyclopedia of Integer Sequences."Vacca,
G. "A New Series for the Eulerian Constant." Quart. J. Pure Appl. Math.41,
363-368, 1910.