The Hurwitz zeta function is a generalization of the Riemann
zeta function
that is also known as the generalized zeta function. It is classically defined by
the formula
is implemented in the Wolfram Language as Zeta[s,
a]. Note that the two are identical only for .
The plot above shows for real and , with the zero contour indicated in black.
For ,
a globally convergent series for (which, for fixed , gives an analytic continuation
of
to the entire complex -plane except the point ) is given by
If the singular term is excluded from the sum definition of , then as well.
The Hurwitz zeta function is given by the integral
(5)
for
and .
The plot above illustrates the complex zeros of (Trott 1999), where . Here, the complex -plane is horizontal and the real -line is vertical and runs from at the bottom to at the top. The upper line is the critical
line ,
which contains zeros of . The lower two lines are and (again), which contain zeros of and , respectively, since ; cf. equation (9) below.
This plot also appeared on the cover of the March 2004 issue of FOCUS, the
Mathematical Association of America's news magazine.
The Hurwitz zeta function can also be given by the functional equation
(6)
(Apostol 1995, Miller and Adamchik 1999), or the integral
(7)
If
and ,
then
(8)
(Hurwitz 1882; Whittaker and Watson 1990, pp. 268-269).
The Hurwitz zeta function satisfies
(9)
for
(Apostol 1995, p. 264), where is a Bernoulli polynomial,
giving the special case
(10)
In addition,
(11)
(12)
(13)
(14)
(15)
Derivative identities include
(16)
(17)
where
is the gamma function (Bailey et al. 2006,
p. 179). The definition (1) implies that
(18)
for .
In the limit,
(19)
(Whittaker and Watson 1990, p. 271; Allouche 1992), where is the digamma function.
The polygamma function can be expressed in terms of the Hurwitz zeta function
by
where
means ,
means ,
and the upper and lower fractions on the left side of the equations correspond to
the plus and minus signs, respectively, on the right side.
Adamchik, V. "A Class of Logarithmic Integrals." In ISSAC'97:
July 21-23, 1997, Maui, Hawaii: Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation (Ed. W. W. Kuechlin). New York:
ACM, 1997.Adamchik, V. S. and Srivastava, H. M. "Some
Series of the Zeta and Related Functions." Analysis18, 131-144,
1998.Apostol, T. M. Introduction
to Analytic Number Theory. New York: Springer-Verlag, 1995.Bailey,
D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.;
and Moll, V. H. Experimental
Mathematics in Action. Wellesley, MA: A K Peters, 2007.Berndt,
B. C. "On the Hurwitz Zeta-Function." Rocky Mountain J. Math.2,
151-157, 1972.Cvijovic, D. and Klinowski, J. "Values of the Legendre
Chi and Hurwitz Zeta Functions at Rational Arguments." Math. Comput.68,
1623-1630, 1999.Elizalde, E.; Odintsov, A. D.; and Romeo, A. Zeta
Regularization Techniques with Applications. River Edge, NJ: World Scientific,
1994.Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi,
F. G. "The Generalized Zeta Function." §1.10 in Higher
Transcendental Functions, Vol. 1. New York: Krieger, pp. 24-27,
1981.Hasse, H. "Ein Summierungsverfahren für die Riemannsche
-Reihe."
Math. Z.32, 458-464, 1930.Hauss, M. Verallgemeinerte
Stirling, Bernoulli und Euler Zahlen, deren Anwendungen und schnell konvergente Reihen
für Zeta Funktionen. Aachen, Germany: Verlag Shaker, 1995.Hurwitz,
A. "Einige Eigenschaften der Dirichlet'schen Funktionen , die bei der Bestimmung der Klassenanzahlen
Binärer quadratischer Formen auftreten." Z. für Math. und Physik27,
86-101, 1882.Knopfmacher, J. "Generalised Euler Constants."
Proc. Edinburgh Math. Soc.21, 25-32, 1978.Magnus, W.
and Oberhettinger, F. Formulas
and Theorems for the Special Functions of Mathematical Physics, 3rd ed. New
York: Springer-Verlag, 1966.Miller, J. and Adamchik, V. "Derivatives
of the Hurwitz Zeta Function for Rational Arguments." J. Comput. Appl. Math.100,
201-206, 1999.Prudnikov, A. P.; Marichev, O. I.; and Brychkov,
Yu. A. "The Generalized Zeta Function , Bernoulli Polynomials , Euler Polynomials , and Polylogarithms ." §1.2 in Integrals
and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach,
pp. 23-24, 1990.Spanier, J. and Oldham, K. B. "The Hurwitz
Function ."
Ch. 62 in An
Atlas of Functions. Washington, DC: Hemisphere, pp. 653-664, 1987.Trott,
M. "Zeros of the Generalized Riemann Zeta Function as a Function of ." Background image in graphics gallery. In Wolfram, S.
The
Mathematica Book, 4th ed. Cambridge, England: Cambridge University Press,
p. 982, 1999. http://documents.wolfram.com/v4/MainBook/G.2.22.html.Whittaker,
E. T. and Watson, G. N. A
Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University
Press, pp. 268-269, 1990.Wilton, J. R. "A Note on the
Coefficients in the Expansion of in Powers of ." J. Pure Appl. Math.50, 329-332, 1927.