TOPICS
Search

Imaginary Part


ImPart

The imaginary part I[z] of a complex number z=x+iy is the real number multiplying i, so I[x+iy]=y. In terms of z itself,

 I[z]=(z-z^_)/(2i),

where z^_ is the complex conjugate of z. The imaginary part is implemented in the Wolfram Language as Im[z].


See also

Absolute Square, Complex Argument, Complex Conjugate, Complex Modulus, Complex Plane, Imaginary Number, Purely Imaginary Number, Real Part, Sign

Related Wolfram sites

http://functions.wolfram.com/ComplexComponents/Im/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 16, 1972.Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 2, 1999.

Referenced on Wolfram|Alpha

Imaginary Part

Cite this as:

Weisstein, Eric W. "Imaginary Part." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ImaginaryPart.html

Subject classifications