The most general form of "an" exponential function is a power-law function of the form
(1)
where ,
,
and
are real numbers,
is a positive real number, and is a real variable. When is positive, is an exponentially
increasing function and when is negative, is an exponentially
decreasing function .
In contrast, "the" exponential function (in elementary contexts sometimes called the "natural exponential function ")
is the function defined by
(2)
where e is positive real number is the base of the natural
logarithm . The function is also the unique solution of the differential
equation
with initial condition . In other words, the exponential function is its own
derivative , so
(3)
The exponential function defined for complex variable is an entire function in
the complex plane .
The exponential function is implemented in the Wolfram
Language as Exp [z ].
The "natural" and general exponential functions are related to one another by a simple scalings of the variable and multiplicative prefactors via the identity
(4)
where
is the natural logarithm .
The exponential function has the simple Maclaurin
series
(5)
where
is a factorial , and satisfies the limit
(6)
The exponential function satisfies the identity
(7)
It is also related to trigonometric functions via the identities
where
is the Gudermannian (Beyer 1987, p. 164; Zwillinger
1995, p. 485).
If ,
(12)
Similarly, if
(13)
then
The exponential function has continued fraction
(17)
(Wall 1948, p. 348).
The above plot shows the function (Trott 2004, pp. 165-166).
Integrals involving the exponential function include
(Borwein et al. 2004, p. 55).
See also Cis ,
Complex Exponentiation ,
e ,
Euler
Formula ,
Exponent ,
Exponent
Laws ,
Exponential Decay ,
Exponential
Growth ,
Exponential Ramp ,
Exponentially
Decreasing Function ,
Exponentially
Increasing Function ,
Fourier
Transform--Exponential Function ,
Gudermannian ,
Natural Exponential Function ,
Phasor ,
Power ,
Sigmoid Function Explore this
topic in the MathWorld classroom
Related Wolfram sites http://functions.wolfram.com/ElementaryFunctions/Exp/
Explore with Wolfram|Alpha
References Abramowitz, M. and Stegun, I. A. (Eds.). "Exponential Function." §4.2 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 69-71, 1972. Beyer, W. H. CRC
Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 217,
1987. Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation
in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters,
2004. Finch, S. "Linear Independence of Exponential Functions."
http://algo.inria.fr/csolve/sstein.html . Fischer,
G. (Ed.). Plates 127-128 in Mathematische
Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig,
Germany: Vieweg, pp. 124-125, 1986. Krantz, S. G. "The
Exponential and Applications." §1.2 in Handbook
of Complex Variables. Boston, MA: Birkhäuser, pp. 7-12, 1999. Spanier,
J. and Oldham, K. B. "The Exponential Function " and "Exponentials of Powers ." Chs. 26-27 in An
Atlas of Functions. Washington, DC: Hemisphere, pp. 233-261, 1987. Trott,
M. "Elementary Transcendental Functions." §2.2.3 in The
Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/ . Wall,
H. S. Analytic
Theory of Continued Fractions. New York: Chelsea, 1948. Yates,
R. C. "Exponential Curves." A
Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards,
pp. 86-97, 1952. Zwillinger, D. (Ed.). CRC
Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995. Referenced
on Wolfram|Alpha Exponential Function
Cite this as:
Weisstein, Eric W. "Exponential Function."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/ExponentialFunction.html
Subject classifications More... Less...