TOPICS
Search

Sigmoid Function


SigmoidFunction
SigmoidReImAbs
Min Max
Re
Im Powered by webMathematica

The sigmoid function, also called the sigmoidal curve (von Seggern 2007, p. 148) or logistic function, is the function

 y=1/(1+e^(-x)).
(1)

It has derivative

(dy)/(dx)=[1-y(x)]y(x)
(2)
=(e^(-x))/((1+e^(-x))^2)
(3)
=(e^x)/((1+e^x)^2)
(4)

and indefinite integral

intydx=x+ln(1+e^(-x))
(5)
=ln(1+e^x).
(6)

It has Maclaurin series

y(x)=sum_(n=0)^(infty)((-1)^nE_n(0))/(2n!)x^n
(7)
=sum_(n=0)^(infty)((-1)^(n+1)(2^(n+1)-1)B_(n+1))/((n+1))x^n
(8)
=1/2+1/4x-1/(48)x^3+1/(480)x^5-(17)/(80640)x^7+(31)/(1451520)x^9-...,
(9)

where E_n(x) is an Euler polynomial and B_n is a Bernoulli number.

It has an inflection point at x=0, where

 y^('')(x)=-(e^x(e^x-1))/((e^x+1)^3)=0.
(10)

It is also the solution to the ordinary differential equation

 (dy)/(dx)=y(1-y)
(11)

with initial condition y(0)=1/2.


See also

Einstein Functions, Exponential Function, Exponential Ramp, Heaviside Step Function, Logistic Distribution, Logistic Equation

Explore with Wolfram|Alpha

References

von Seggern, D. CRC Standard Curves and Surfaces with Mathematics, 2nd ed. Boca Raton, FL: CRC Press, 2007.

Referenced on Wolfram|Alpha

Sigmoid Function

Cite this as:

Weisstein, Eric W. "Sigmoid Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SigmoidFunction.html

Subject classifications