TOPICS
Search

Fourier Transform--Exponential Function


The Fourier transform of e^(-k_0|x|) is given by

F_x[e^(-k_0|x|)](k)=int_(-infty)^inftye^(-k_0|x|)e^(-2piikx)dx=int_(-infty)^0e^(-2piikx)e^(2pixk_0)dx+int_0^inftye^(-2piikx)e^(-2pik_0x)dx
(1)
=int_(-infty)^0[cos(2pikx)-isin(2pikx)]e^(2pik_0x)dx+int_0^infty[cos(2pikx)-isin(2pikx)]e^(-2pik_0x)dx.
(2)

Now let u=-x so du=-dx, then

 F_x[e^(-k_0|x|)](k) 
=int_0^infty[cos(2piku)+isin(2piku)]e^(-2pik_0u)du 
+int_0^infty[cos(2piku)-isin(2piku)]e^(-2pik_0u)du 
=2int_0^inftycos(2piku)e^(-2pik_0u)du,
(3)

which, from the damped exponential cosine integral, gives

 F_x[e^(-2pik_0|x|)](k)=1/pi(k_0)/(k^2+k_0^2),
(4)

which is a Lorentzian function.


See also

Damped Exponential Cosine Integral, Exponential Function, Fourier Transform, Lorentzian Function

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Fourier Transform--Exponential Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FourierTransformExponentialFunction.html

Subject classifications