The Eulerian number
gives the number of permutations of having permutation ascents
(Graham et al. 1994, p. 267). Note that a slightly different definition
of Eulerian number is used by Comtet (1974), who defines the Eulerian number (sometimes also denoted ) as the number of permutation
runs of length ,
and hence .
The Eulerian numbers are given explicitly by the sum
(1)
(Comtet 1974, p. 243). The Eulerian numbers satisfy the sum identity
(OEIS A008292). Therefore, the Eulerian numbers represent a sort of generalization of the binomial
coefficients where the defining recurrence
relation weights the sum of neighbors by their row and column numbers, respectively.
Abramson, M. and Moser, W. O. J. "Permutations without Rising or Falling -Sequences." Ann. Math. Statist.38,
1245-1254, 1967.André, D. "Mémoir sur les couples
actifs de permutations." Mem. della Pontificia Acad. Romana dei Nuovo Lincei23,
189-223, 1906.Carlitz, L. "Note on a Paper of Shanks." Amer.
Math. Monthly59, 239-241, 1952.Carlitz, L. "Eulerian
Numbers and Polynomials." Math. Mag.32, 247-260, 1959.Carlitz,
L. "Eulerian Numbers and Polynomials of Higher Order." Duke Math. J.27,
401-423, 1960.Carlitz, L. "A Note on the Eulerian Numbers."
Arch. Math.14, 383-390, 1963.Carlitz, L. and Riordan,
J. "Congruences for Eulerian Numbers." Duke Math. J.20,
339-343, 1953.Carlitz, L.; Roselle, D. P.; and Scoville, R. "Permutations
and Sequences with Repetitions by Number of Increase." J. Combin. Th.1,
350-374, 1966.Cesàro, E. "Dérivées des fonctions
de fonctions." Nouv. Ann.5, 305-327, 1886.Comtet,
L. "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced
Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht,
Netherlands: Reidel, pp. 51 and 240-246, 1974.David, F. N.;
Kendall, M. G.; and Barton, D. E. Symmetric
Function and Allied Tables. Cambridge, England: Cambridge University Press,
p. 260, 1966.Dillon, J. F.; Roselle, D. P. "Eulerian
Numbers of Higher Order." Duke Math. J.35, 247-256, 1968.Foata,
D. and Schützenberger, M.-P. Théorie
géométrique des polynômes Eulériens. Berlin: Springer-Verlag,
1970.Frobenius, F. G. "Ueber die Bernoullischen Zahlen und
die Eulerischen Polynome." Sitzungsber. Preuss. Akad. Wiss., pp. 808-847,
1910.Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Eulerian
Numbers." §6.2 in Concrete
Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley,
pp. 267-272, 1994.Kimber, A. C. "Eulerian Numbers."
Supplement to Encyclopedia
of Statistical Sciences. (Ed. S. Kotz, N. L. Johnson, and
C. B. Read). New York: Wiley, pp. 59-60, 1989.Poussin,
F. "Sur une propriété arithmétique de certains polynomes
associés aux nombres d'Euler." C. R. Acad. Sci. Paris Sér.
A-B266, A392-A393, 1968.Salama, I. A. and Kupper, L. L.
"A Geometric Interpretation for the Eulerian Numbers." Amer. Math. Monthly93,
51-52, 1986.Schrutka, L. "Eine neue Einleitung der Permutationen."
Math. Ann.118, 246-250, 1941.Shanks, E. B. "Iterated
Sums of Powers of the Binomial Coefficients." Amer. Math. Monthly58,
404-407, 1951.Sloane, N. J. A. Sequences A000295/M3416,
A000460/M4795, A000498/M5188,
and A008292 in "The On-Line Encyclopedia
of Integer Sequences."Tomić, M. "Sur une nouvelle classe
de polynômes de la théorie des fonctions spéciales." Publ.
Fac. Elect. U. Belgrade, No. 38, 1960.Toscano, L. "Su
due sviluppi della potenza di un binomio, -coefficienti di Eulero." Bull. S. M. Calabrese16,
1-8, 1965.