where
is the Lerch transcendent (Erdélyi et
al. 1981, p. 30). The polylogarithm arises in Feynman diagram integrals
(and, in particular, in the computation of quantum electrodynamics corrections to
the electrons gyromagnetic ratio), and the special cases and are called the dilogarithm
and trilogarithm, respectively. The polylogarithm
is implemented in the Wolfram Language
as PolyLog[n,
z].
The polylogarithm also arises in the closed form of the integrals of the Fermi-Dirac
distribution
where
is the Riemann zeta function. Note, however,
that the meaning of
for fixed complex
is not completely well-defined, since it depends on how is approached in four-dimensional -space.
No similar formulas of this type are known for higher orders (Lewin 1991, p. 2). appears in the third-order correction
term in the gyromagnetic ratio of the electron.
The derivative of a polylogarithm is itself a polylogarithm,
(18)
Bailey et al. showed that
(19)
A number of remarkable identities exist for polylogarithms, including the amazing identity satisfied by ,
where
(OEIS A073011) is the smallest Salem
constant, i.e., the largest positive root of the polynomial in Lehmer's
Mahler measure problem (Cohen et al. 1992; Bailey and Broadhurst 1999;
Borwein and Bailey 2003, pp. 8-9).
No general algorithm is known for integration of polylogarithms
of functions.
Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math.
Comput.66, 903-913, 1997.Bailey, D. H. and Broadhurst,
D. J. "A Seventeenth-Order Polylogarithm Ladder." 20 Jun 1999. http://arxiv.org/abs/math.CA/9906134.Borwein,
J. and Bailey, D. Mathematics
by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A
K Peters, 2003.Borwein, J. M.; Bradley, D. M.; Broadhurst,
D. J.; and Lisonek, P. "Special Values of Multidimensional Polylogarithms."
Trans. Amer. Math. Soc.353, 907-941, 2001.Berndt, B. C.
Ramanujan's
Notebooks, Part IV. New York: Springer-Verlag, pp. 323-326, 1994.Cohen,
H.; Lewin, L.; and Zagier, D. "A Sixteenth-Order Polylogarithm Ladder."
Exper. Math.1, 25-34, 1992. http://www.expmath.org/expmath/volumes/1/1.html.Erdélyi,
A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher
Transcendental Functions, Vol. 1. New York: Krieger, pp. 30-31,
1981.Jonquière, A. "Ueber eine Klasse von Transcendenten,
welche durch mehrmahlige Integration rationaler Funktionen enstehen." Öfversigt
af Kongl. Vetenskaps-Akademiens Förhandlingar45, 522-531, 1888.Jonquière,
A. "Note sur la série ." Öfversigt af Kongl.
Vetenskaps-Akademiens Förhandlingar46, 257-268, 1888.Jonquière,
A. "Ueber einige Transcendente, welche bei den wiederholten Integration rationaler
Funktionen auftreten." Bihang till Kongl. Svenska Vetenskaps-Akademiens Handlingar15,
1-50, 1889.Jonquière, A. "Note sur la série ."
Bull. Soc. Math. France17, 142-152, 1889.Lewin, L. Dilogarithms
and Associated Functions. London: Macdonald, 1958.Lewin, L.
Polylogarithms
and Associated Functions. New York: North-Holland, 1981.Lewin,
L. (Ed.). Structural
Properties of Polylogarithms. Providence, RI: Amer. Math. Soc., 1991.Nielsen,
N. Der Euler'sche Dilogarithms. Leipzig, Germany: Halle, 1909.Prudnikov,
A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Generalized
Zeta Function ,
Bernoulli Polynomials ,
Euler Polynomials ,
and Polylogarithms ."
§1.2 in Integrals
and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach,
pp. 23-24, 1990.Sloane, N. J. A. Sequence A073011
in "The On-Line Encyclopedia of Integer Sequences."Truesdell,
C. "On a Function Which Occurs in the Theory of the Structure of Polymers."
Ann. Math.46, 114-157, 1945.Zagier, D. "Special
Values and Functional Equations of Polylogarithms." Appendix A in Structural
Properties of Polylogarithms (Ed. L. Lewin). Providence, RI: Amer. Math.
Soc., 1991.