TOPICS
Search

Dirichlet Eta Function


DirichletEtaReal
Min Max
Powered by webMathematica
DirichletEtaReImAbs
Min Max
Re
Im Powered by webMathematica

The Dirichlet eta function is the function eta(s) defined by

eta(s)=sum_(k=1)^(infty)((-1)^(k-1))/(k^s)
(1)
=(1-2^(1-s))zeta(s),
(2)

where zeta(s) is the Riemann zeta function. Note that Borwein and Borwein (1987, p. 289) use the notation alpha(s) instead of eta(s). The function is also known as the alternating zeta function and denoted zeta^*(s) (Sondow 2003, 2005).

eta(0)=1/2 is defined by setting s=0 in the right-hand side of (2), while eta(1)=ln2 (sometimes called the alternating harmonic series) is defined using the left-hand side. The function vanishes at each zero of 1-2^(1-s) except s=1 (Sondow 2003).

The eta function is related to the Riemann zeta function and Dirichlet lambda function by

 (zeta(nu))/(2^nu)=(lambda(nu))/(2^nu-1)=(eta(nu))/(2^nu-2)
(3)

and

 zeta(nu)+eta(nu)=2lambda(nu)
(4)

(Spanier and Oldham 1987). The eta function is also a special case of the polylogarithm function,

 eta(x)=-Li_x(-1).
(5)

The value eta(1) may be computed by noting that the Maclaurin series for ln(1+x) for -1<x<=1 is

 ln(1+x)=x-1/2x^2+1/3x^3-1/4x^4+....
(6)

Therefore, the natural logarithm of 2 is

ln2=ln(1+1)
(7)
=1-1/2+1/3-1/4+...
(8)
=sum_(n=1)^(infty)((-1)^(n-1))/n
(9)
=eta(1).
(10)

Values for even integers are related to the analytical values of the Riemann zeta function. Particular values are given in Abramowitz and Stegun (1972, p. 811), and include

eta(0)=1/2
(11)
eta(1)=ln2
(12)
eta(2)=1/(12)pi^2
(13)
eta(3)=3/4zeta(3)
(14)
eta(4)=7/(720)pi^4
(15)
eta(5)=(15)/(16)zeta(5).
(16)

It appears in the integral

 int_0^1int_0^1([-ln(xy)]^s)/(1+xy)dxdy=Gamma(s+2)eta(s+2)
(17)

(Guillera and Sondow 2005).

DirichletEtaPrime

The derivative of the eta function is given by

 eta^'(x)=2^(1-x)(ln2)zeta(x)+(1-2^(1-x))zeta^'(x).
(18)

Special cases are given by

eta^'(-1)=3lnA-1/4-(ln2)/3
(19)
=0.2652143709...
(20)
eta^'(0)=1/2ln(pi/2)
(21)
=0.2257913526...
(22)
eta^'(1/2)=zeta(1/2)[1/2(3-sqrt(2))ln2-1/4(sqrt(2)-1)(2gamma+pi+2lnpi)]
(23)
=0.1932888316
(24)
eta^'(1)=gammaln2-((ln2)^2)/2
(25)
=0.1598689037...
(26)

(OEIS A271533, OEIS A256358, OEIS A265162, and OEIS A091812), where A is the Glaisher-Kinkelin constant, zeta(z) is the Riemann zeta function, and gamma is the Euler-Mascheroni constant. The identity for eta^'(0) provides a remarkable proof of the Wallis formula.


See also

Dedekind Eta Function, Dirichlet Beta Function, Dirichlet Lambda Function, Hadjicostas's Formula, Riemann Zeta Function, Zeta Function

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 807-808, 1972.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005. http://arxiv.org/abs/math.NT/0506319.Havil, J. "Real Alternatives." §16.12 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 206-207, 2003.Sloane, N. J. A. Sequences A271533, A256358, A265162, and A091812 in "The On-Line Encyclopedia of Integer Sequences."Sondow, J. "Zeros of the Alternating Zeta Function on the Line R[s]=1." Amer. Math. Monthly 110, 435-437, 2003.Sondow, J. "Double Integrals for Euler's Constant and ln(4/pi) and an Analog of Hadjicostas's Formula." Amer. Math. Monthly 112, 61-65, 2005.Spanier, J. and Oldham, K. B. "The Zeta Numbers and Related Functions." Ch. 3 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 25-33, 1987.

Referenced on Wolfram|Alpha

Dirichlet Eta Function

Cite this as:

Weisstein, Eric W. "Dirichlet Eta Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DirichletEtaFunction.html

Subject classifications