TOPICS
Search

Euler Zigzag Number


The number of alternating permutations for n elements is sometimes called an Euler zigzag number. Denote the number of alternating permutations on n elements for which the first element is k by E(n,k). Then E(1,1)=1 and

 E(n,k)={0   for k>=n or k<1; E(n,k-1)+E(n-1,n-k)   otherwise.
(1)

where E(n,k) is an Entringer number.


See also

Alternating Permutation, Entringer Number, Secant Number, Tangent Number

Explore with Wolfram|Alpha

References

Ruskey, F. "Information of Alternating Permutations." http://www.theory.csc.uvic.ca/~cos/inf/perm/Alternating.html.Sloane, N. J. A. Sequence A000111/M1492 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Euler Zigzag Number

Cite this as:

Weisstein, Eric W. "Euler Zigzag Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EulerZigzagNumber.html

Subject classifications