TOPICS
Search

Exponential Generating Function


An exponential generating function for the integer sequence a_0, a_1, ... is a function E(x) such that

E(x)=sum_(k=0)^(infty)a_k(x^k)/(k!)
(1)
=a_0+a_1x/(1!)+a_2(x^2)/(2!)+....
(2)

See also

Generating Function

Explore with Wolfram|Alpha

References

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, p. 9, 1995.

Referenced on Wolfram|Alpha

Exponential Generating Function

Cite this as:

Weisstein, Eric W. "Exponential Generating Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ExponentialGeneratingFunction.html

Subject classifications