For any ideal in a Dedekind ring, there
is an ideal
such that
(1)
|
where
is a principal ideal, (i.e., an ideal
of rank 1). Moreover, for a Dedekind ring with a
finite ideal class group, there is a finite list of ideals
such that this equation may be satisfied for some
. The size of this list is known as the class number.
Class numbers are usually studied in the context of the orders of number fields. If this order is maximal, then it is the ring of integers of the number field, in which case the class number is equal to the order of the class group of the number field; otherwise it is equal to the order of the Picard group of the nonmaximal order in question.
When the class number of a ring of integers in a number field is 1, the ring corresponding to a given ideal has unique factorization and, in a sense, the class number is a measure of the failure of unique factorization in that ring.
A finite series giving exactly the class number of a ring is known as a class number formula. A class number formula is known for the full ring of cyclotomic integers, as well as for any subring of the cyclotomic integers. Finding the class number is a computationally difficult problem.
The Wolfram Language function NumberFieldClassNumber[Sqrt[d]]
gives the class number
for
a fundamental
discriminant.
The class number
of an order of a quadratic field with discriminant
is equal to the number of reduced binary quadratic forms
of discriminant
.
For example, the class number
of the ring of integers
of the number field
is equal to 3 since there are three reduced binary
quadratic forms of discriminant
, namely
,
, and
. An inefficient way to compute the class number
of the unique order of the quadratic
number field
with discriminant
is to count the number of reduced binary quadratic forms with discriminant
.
Some fairly sophisticated mathematics shows that the class number for discriminant can be given by the class
number formula
(2)
|
where
is the Kronecker symbol,
is the fundamental unit,
is the number of substitutions which
leave the binary quadratic form unchanged
(3)
|
and the sums are taken over all terms where the Kronecker symbol is defined (Cohn 1980). The class number for can also be written
(4)
|
for , where the product
is taken over terms for which the Kronecker symbol
is defined.
The class number
is related to the Dirichlet L-series by
(5)
|
where
is the Dirichlet structure constant.
Oesterlé (1985) showed that class number satisfies the inequality
(6)
|
for , where
is the floor function,
the product is over primes dividing
, and the
indicates that the greatest
prime factor of
is omitted from the product. It is also known that if
is relatively prime to
5077, then the denominator 7000 in (6) can be replaced by 55.
Gauss's class number problem asks to determine a complete list of fundamental binary
quadratic form discriminants such that the class number is given by
for a given
. This problem has been solved for
and odd
. Gauss conjectured that the class number
of an imaginary
quadratic field with binary quadratic
form discriminant
tends to infinity with
,
an assertion now known as Gauss's class
number conjecture.
The negated discriminants
corresponding to imaginary quadratic fields are 3, 4, 7, 8, 11, 15, 19, 20, 23, 24,
31, 35, 39, 40, 43, ... (OEIS A003657), which
have corresponding class numbers
, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, ... (OEIS
A006641).
The complete set of negative discriminants having class numbers 1-5 and odd 7-23 are known. Buell (1977) gives the smallest and largest class numbers for fundamental discriminants with , partitioned into even
discriminants, discriminants 1 (mod 8), and discriminants 5 (mod 8). Arno et al.
(1993) give complete lists of values of fundamental
with
for odd
, 7, 9, ..., 23. Wagner (1996) gives complete lists of values
for
, 6, and 7. Lists of negative fundamental discriminants corresponding
to imaginary quadratic fields
having small class numbers
are given in the table below. In the table,
is the number of fundamental
values of
with a given class number
,
where "fundamental" means that
is not divisible by any square
number
such that
.
For example, although
,
is not a fundamental discriminant
since
and
. Even
values
have been computed by Weisstein.
The following table lists the fundamental discriminants
having class numbers
(Cohen 1993, pp. 229 and 514-515; Cox 1997, p. 271). The search was terminated
at 50000, 70000, 90000, and 90000 for class numbers 18, 20, 22, and 24, respectively.
As far as I know, analytic upper bounds are not currently known for these cases.
Sloane | |||
1 | 9 | A014602 | 3, 4, 7, 8, 11, 19, 43, 67, 163 |
2 | 18 | A014603 | 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427 |
3 | 16 | A006203 | 23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907 |
4 | 54 | A013658 | 39, 55, 56, 68, 84, 120, 132, 136, 155, 168, 184, 195, 203, 219, 228, 259, 280, 291, 292, 312, 323, 328, 340, 355, 372, 388, 408, 435, 483, 520, 532, 555, 568, 595, 627, 667, 708, 715, 723, 760, 763, 772, 795, 955, 1003, 1012, 1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555 |
5 | 25 | A046002 | 47, 79, 103, 127, 131, 179, 227, 347, 443, 523, 571, 619, 683, 691, 739, 787, 947, 1051, 1123, 1723, 1747, 1867, 2203, 2347, 2683 |
6 | 51 | A046003 | 87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763 |
7 | 31 | A046004 | 71, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171, 1483, 1523, 1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467, 2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923 |
8 | 131 | A046005 | 95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204, 1240, 1252, 1288, 1299, 1320, 1339, 1348, 1380, 1428, 1443, 1528, 1540, 1635, 1651, 1659, 1672, 1731, 1752, 1768, 1771, 1780, 1795, 1803, 1828, 1848, 1864, 1912, 1939, 1947, 1992, 1995, 2020, 2035, 2059, 2067, 2139, 2163, 2212, 2248, 2307, 2308, 2323, 2392, 2395, 2419, 2451, 2587, 2611, 2632, 2667, 2715, 2755, 2788, 2827, 2947, 2968, 2995, 3003, 3172, 3243, 3315, 3355, 3403, 3448, 3507, 3595, 3787, 3883, 3963, 4123, 4195, 4267, 4323, 4387, 4747, 4843, 4867, 5083, 5467, 5587, 5707, 5947, 6307 |
9 | 34 | A046006 | 199, 367, 419, 491, 563, 823, 1087, 1187, 1291, 1423, 1579, 2003, 2803, 3163, 3259, 3307, 3547, 3643, 4027, 4243, 4363, 4483, 4723, 4987, 5443, 6043, 6427, 6763, 6883, 7723, 8563, 8803, 9067, 10627 |
10 | 87 | A046007 | 119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028, 3091, 3139, 3147, 3291, 3412, 3508, 3635, 3667, 3683, 3811, 3859, 3928, 4083, 4227, 4372, 4435, 4579, 4627, 4852, 4915, 5131, 5163, 5272, 5515, 5611, 5667, 5803, 6115, 6259, 6403, 6667, 7123, 7363, 7387, 7435, 7483, 7627, 8227, 8947, 9307, 10147, 10483, 13843 |
11 | 41 | A046008 | 167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667 |
12 | 206 | A046009 | 231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731, 744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096, 1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419, 1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732, 1763, 1807, 1812, 1892, 1955, 1972, 2068, 2091, 2104, 2132, 2148, 2155, 2235, 2260, 2355, 2387, 2388, 2424, 2440, 2468, 2472, 2488, 2491, 2555, 2595, 2627, 2635, 2676, 2680, 2692, 2723, 2728, 2740, 2795, 2867, 2872, 2920, 2955, 3012, 3027, 3043, 3048, 3115, 3208, 3252, 3256, 3268, 3304, 3387, 3451, 3459, 3592, 3619, 3652, 3723, 3747, 3768, 3796, 3835, 3880, 3892, 3955, 3972, 4035, 4120, 4132, 4147, 4152, 4155, 4168, 4291, 4360, 4411, 4467, 4531, 4552, 4555, 4587, 4648, 4699, 4708, 4755, 4771, 4792, 4795, 4827, 4888, 4907, 4947, 4963, 5032, 5035, 5128, 5140, 5155, 5188, 5259, 5299, 5307, 5371, 5395, 5523, 5595, 5755, 5763, 5811, 5835, 6187, 6232, 6235, 6267, 6283, 6472, 6483, 6603, 6643, 6715, 6787, 6843, 6931, 6955, 6963, 6987, 7107, 7291, 7492, 7555, 7683, 7891, 7912, 8068, 8131, 8155, 8248, 8323, 8347, 8395, 8787, 8827, 9003, 9139, 9355, 9523, 9667, 9843, 10003, 10603, 10707, 10747, 10795, 10915, 11155, 11347, 11707, 11803, 12307, 12643, 14443, 15163, 15283, 16003, 17803 |
13 | 37 | A046010 | 191, 263, 607, 631, 727, 1019, 1451, 1499, 1667, 1907, 2131, 2143, 2371, 2659, 2963, 3083, 3691, 4003, 4507, 4643, 5347, 5419, 5779, 6619, 7243, 7963, 9547, 9739, 11467, 11587, 11827, 11923, 12043, 14347, 15787, 16963, 20563 |
14 | 95 | A046011 | 215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899, 1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123, 2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931, 2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988, 4187, 4315, 4443, 4468, 4659, 4803, 4948, 5027, 5091, 5251, 5267, 5608, 5723, 5812, 5971, 6388, 6499, 6523, 6568, 6979, 7067, 7099, 7147, 7915, 8035, 8187, 8611, 8899, 9115, 9172, 9235, 9427, 10123, 10315, 10363, 10411, 11227, 12147, 12667, 12787, 13027, 13435, 13483, 13603, 14203, 16867, 18187, 18547, 18643, 20227, 21547, 23083, 30067 |
15 | 68 | A046012 | 239, 439, 751, 971, 1259, 1327, 1427, 1567, 1619, 2243, 2647, 2699, 2843, 3331, 3571, 3803, 4099, 4219, 5003, 5227, 5323, 5563, 5827, 5987, 6067, 6091, 6211, 6571, 7219, 7459, 7547, 8467, 8707, 8779, 9043, 9907, 10243, 10267, 10459, 10651, 10723, 11083, 11971, 12163, 12763, 13147, 13963, 14323, 14827, 14851, 15187, 15643, 15907, 16603, 16843, 17467, 17923, 18043, 18523, 19387, 19867, 20707, 22003, 26203, 27883, 29947, 32323, 34483 |
16 | 322 | A046013 | 399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072, 2095, 2195, 2211, 2244, 2280, 2292, 2296, 2328, 2356, 2379, 2436, 2568, 2580, 2584, 2739, 2760, 2811, 2868, 2884, 2980, 3063, 3108, 3140, 3144, 3160, 3171, 3192, 3220, 3336, 3363, 3379, 3432, 3435, 3443, 3460, 3480, 3531, 3556, 3588, 3603, 3640, 3732, 3752, 3784, 3795, 3819, 3828, 3832, 3939, 3976, 4008, 4020, 4043, 4171, 4179, 4180, 4216, 4228, 4251, 4260, 4324, 4379, 4420, 4427, 4440, 4452, 4488, 4515, 4516, 4596, 4612, 4683, 4687, 4712, 4740, 4804, 4899, 4939, 4971, 4984, 5115, 5160, 5187, 5195, 5208, 5363, 5380, 5403, 5412, 5428, 5460, 5572, 5668, 5752, 5848, 5860, 5883, 5896, 5907, 5908, 5992, 5995, 6040, 6052, 6099, 6123, 6148, 6195, 6312, 6315, 6328, 6355, 6395, 6420, 6532, 6580, 6595, 6612, 6628, 6708, 6747, 6771, 6792, 6820, 6868, 6923, 6952, 7003, 7035, 7051, 7195, 7288, 7315, 7347, 7368, 7395, 7480, 7491, 7540, 7579, 7588, 7672, 7707, 7747, 7755, 7780, 7795, 7819, 7828, 7843, 7923, 7995, 8008, 8043, 8052, 8083, 8283, 8299, 8308, 8452, 8515, 8547, 8548, 8635, 8643, 8680, 8683, 8715, 8835, 8859, 8932, 8968, 9208, 9219, 9412, 9483, 9507, 9508, 9595, 9640, 9763, 9835, 9867, 9955, 10132, 10168, 10195, 10203, 10227, 10312, 10387, 10420, 10563, 10587, 10635, 10803, 10843, 10948, 10963, 11067, 11092, 11107, 11179, 11203, 11512, 11523, 11563, 11572, 11635, 11715, 11848, 11995, 12027, 12259, 12387, 12523, 12595, 12747, 12772, 12835, 12859, 12868, 13123, 13192, 13195, 13288, 13323, 13363, 13507, 13795, 13819, 13827, 14008, 14155, 14371, 14403, 14547, 14707, 14763, 14995, 15067, 15387, 15403, 15547, 15715, 16027, 16195, 16347, 16531, 16555, 16723, 17227, 17323, 17347, 17427, 17515, 18403, 18715, 18883, 18907, 19147, 19195, 19947, 19987, 20155, 20395, 21403, 21715, 21835, 22243, 22843, 23395, 23587, 24403, 25027, 25267, 27307, 27787, 28963, 31243 |
17 | 45 | A046014 | 383, 991, 1091, 1571, 1663, 1783, 2531, 3323, 3947, 4339, 4447, 4547, 4651, 5483, 6203, 6379, 6451, 6827, 6907, 7883, 8539, 8731, 9883, 11251, 11443, 12907, 13627, 14083, 14779, 14947, 16699, 17827, 18307, 19963, 21067, 23563, 24907, 25243, 26083, 26107, 27763, 31627, 33427, 36523, 37123 |
18 | 150 | A046015 | 335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691, 1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747, 2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307, 4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899, 6196, 6227, 6331, 6387, 6484, 6739, 6835, 7323, 7339, 7528, 7571, 7715, 7732, 7771, 7827, 8152, 8203, 8212, 8331, 8403, 8488, 8507, 8587, 8884, 9123, 9211, 9563, 9627, 9683, 9748, 9832, 10228, 10264, 10347, 10523, 11188, 11419, 11608, 11643, 11683, 11851, 11992, 12067, 12148, 12187, 12235, 12283, 12651, 12723, 12811, 12952, 13227, 13315, 13387, 13747, 13947, 13987, 14163, 14227, 14515, 14667, 14932, 15115, 15243, 16123, 16171, 16387, 16627, 17035, 17131, 17403, 17635, 18283, 18712, 19027, 19123, 19651, 20035, 20827, 21043, 21652, 21667, 21907, 22267, 22443, 22507, 22947, 23347, 23467, 23683, 23923, 24067, 24523, 24667, 24787, 25435, 26587, 26707, 28147, 29467, 32827, 33763, 34027, 34507, 36667, 39307, 40987, 41827, 43387, 48427 |
19 | 47 | A046016 | 311, 359, 919, 1063, 1543, 1831, 2099, 2339, 2459, 3343, 3463, 3467, 3607, 4019, 4139, 4327, 5059, 5147, 5527, 5659, 6803, 8419, 8923, 8971, 9619, 10891, 11299, 15091, 15331, 16363, 16747, 17011, 17299, 17539, 17683, 19507, 21187, 21211, 21283, 23203, 24763, 26227, 27043, 29803, 31123, 37507, 38707 |
20 | 350 | A046017 | 455, 615, 776, 824, 836, 920, 1064, 1124, 1160, 1263, 1284, 1460, 1495, 1524, 1544, 1592, 1604, 1652, 1695, 1739, 1748, 1796, 1880, 1887, 1896, 1928, 1940, 1956, 2136, 2247, 2360, 2404, 2407, 2483, 2487, 2532, 2552, 2596, 2603, 2712, 2724, 2743, 2948, 2983, 2987, 3007, 3016, 3076, 3099, 3103, 3124, 3131, 3155, 3219, 3288, 3320, 3367, 3395, 3496, 3512, 3515, 3567, 3655, 3668, 3684, 3748, 3755, 3908, 3979, 4011, 4015, 4024, 4036, 4148, 4264, 4355, 4371, 4395, 4403, 4408, 4539, 4548, 4660, 4728, 4731, 4756, 4763, 4855, 4891, 5019, 5028, 5044, 5080, 5092, 5268, 5331, 5332, 5352, 5368, 5512, 5560, 5592, 5731, 5944, 5955, 5956, 5988, 6051, 6088, 6136, 6139, 6168, 6280, 6339, 6467, 6504, 6648, 6712, 6755, 6808, 6856, 7012, 7032, 7044, 7060, 7096, 7131, 7144, 7163, 7171, 7192, 7240, 7428, 7432, 7467, 7572, 7611, 7624, 7635, 7651, 7667, 7720, 7851, 7876, 7924, 7939, 8067, 8251, 8292, 8296, 8355, 8404, 8472, 8491, 8632, 8692, 8755, 8808, 8920, 8995, 9051, 9124, 9147, 9160, 9195, 9331, 9339, 9363, 9443, 9571, 9592, 9688, 9691, 9732, 9755, 9795, 9892, 9976, 9979, 10027, 10083, 10155, 10171, 10291, 10299, 10308, 10507, 10515, 10552, 10564, 10819, 10888, 11272, 11320, 11355, 11379, 11395, 11427, 11428, 11539, 11659, 11755, 11860, 11883, 11947, 11955, 12019, 12139, 12280, 12315, 12328, 12331, 12355, 12363, 12467, 12468, 12472, 12499, 12532, 12587, 12603, 12712, 12883, 12931, 12955, 12963, 13155, 13243, 13528, 13555, 13588, 13651, 13803, 13960, 14307, 14331, 14467, 14491, 14659, 14755, 14788, 15235, 15268, 15355, 15603, 15688, 15691, 15763, 15883, 15892, 15955, 16147, 16228, 16395, 16408, 16435, 16483, 16507, 16612, 16648, 16683, 16707, 16915, 16923, 17067, 17187, 17368, 17563, 17643, 17763, 17907, 18067, 18163, 18195, 18232, 18355, 18363, 19083, 19443, 19492, 19555, 19923, 20083, 20203, 20587, 20683, 20755, 20883, 21091, 21235, 21268, 21307, 21387, 21508, 21595, 21723, 21763, 21883, 22387, 22467, 22555, 22603, 22723, 23443, 23947, 24283, 24355, 24747, 24963, 25123, 25363, 26635, 26755, 26827, 26923, 27003, 27955, 27987, 28483, 28555, 29107, 29203, 30283, 30787, 31003, 31483, 31747, 31987, 32923, 33163, 34435, 35683, 35995, 36283, 37627, 37843, 37867, 38347, 39187, 39403, 40243, 40363, 40555, 40723, 43747, 47083, 48283, 51643, 54763, 58507 |
21 | 85 | A046018 | 431, 503, 743, 863, 1931, 2503, 2579, 2767, 2819, 3011, 3371, 4283, 4523, 4691, 5011, 5647, 5851, 5867, 6323, 6691, 7907, 8059, 8123, 8171, 8243, 8387, 8627, 8747, 9091, 9187, 9811, 9859, 10067, 10771, 11731, 12107, 12547, 13171, 13291, 13339, 13723, 14419, 14563, 15427, 16339, 16987, 17107, 17707, 17971, 18427, 18979, 19483, 19531, 19819, 20947, 21379, 22027, 22483, 22963, 23227, 23827, 25603, 26683, 27427, 28387, 28723, 28867, 31963, 32803, 34147, 34963, 35323, 36067, 36187, 39043, 40483, 44683, 46027, 49603, 51283, 52627, 55603, 58963, 59467, 61483 |
22 | 139 | A171724 | 591, 623, 767, 871, 879, 1076, 1111, 1167, 1304, 1556, 1591, 1639, 1903, 2215, 2216, 2263, 2435, 2623, 2648, 2815, 2863, 2935, 3032, 3151, 3316, 3563, 3587, 3827, 4084, 4115, 4163, 4328, 4456, 4504, 4667, 4811, 5383, 5416, 5603, 5716, 5739, 5972, 6019, 6127, 6243, 6616, 6772, 6819, 7179, 7235, 7403, 7763, 7768, 7899, 8023, 8143, 8371, 8659, 8728, 8851, 8907, 8915, 9267, 9304, 9496, 10435, 10579, 10708, 10851, 11035, 11283, 11363, 11668, 12091, 12115, 12403, 12867, 13672, 14019, 14059, 14179, 14548, 14587, 14635, 15208, 15563, 15832, 16243, 16251, 16283, 16291, 16459, 17147, 17587, 17779, 17947, 18115, 18267, 18835, 18987, 19243, 19315, 19672, 20308, 20392, 22579, 22587, 22987, 24243, 24427, 25387, 25507, 25843, 25963, 26323, 26548, 27619, 28267, 29227, 29635, 29827, 30235, 30867, 31315, 33643, 33667, 34003, 34387, 35347, 41083, 43723, 44923, 46363, 47587, 47923, 49723, 53827, 77683, 85507 |
23 | 68 | A046020 | 647, 1039, 1103, 1279, 1447, 1471, 1811, 1979, 2411, 2671, 3491, 3539, 3847, 3923, 4211, 4783, 5387, 5507, 5531, 6563, 6659, 6703, 7043, 9587, 9931, 10867, 10883, 12203, 12739, 13099, 13187, 15307, 15451, 16267, 17203, 17851, 18379, 20323, 20443, 20899, 21019, 21163, 22171, 22531, 24043, 25147, 25579, 25939, 26251, 26947, 27283, 28843, 30187, 31147, 31267, 32467, 34843, 35107, 37003, 40627, 40867, 41203, 42667, 43003, 45427, 45523, 47947, 90787 |
24 | 511 | A048925 | 695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988, 2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824, 2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540, 3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912, 3940, 4063, 4292, 4308, 4503, 4564, 4580, 4595, 4632, 4692, 4715, 4744, 4808, 4872, 4920, 4936, 5016, 5124, 5172, 5219, 5235, 5236, 5252, 5284, 5320, 5348, 5379, 5432, 5448, 5555, 5588, 5620, 5691, 5699, 5747, 5748, 5768, 5828, 5928, 5963, 5979, 6004, 6008, 6024, 6072, 6083, 6132, 6180, 6216, 6251, 6295, 6340, 6411, 6531, 6555, 6699, 6888, 6904, 6916, 7048, 7108, 7188, 7320, 7332, 7348, 7419, 7512, 7531, 7563, 7620, 7764, 7779, 7928, 7960, 7972, 8088, 8115, 8148, 8211, 8260, 8328, 8344, 8392, 8499, 8603, 8628, 8740, 8760, 8763, 8772, 8979, 9028, 9048, 9083, 9112, 9220, 9259, 9268, 9347, 9352, 9379, 9384, 9395, 9451, 9480, 9492, 9652, 9672, 9715, 9723, 9823, 9915, 9928, 9940, 10011, 10059, 10068, 10120, 10180, 10187, 10212, 10248, 10283, 10355, 10360, 10372, 10392, 10452, 10488, 10516, 10612, 10632, 10699, 10740, 10756, 10788, 10792, 10840, 10852, 10923, 11019, 11032, 11139, 11176, 11208, 11211, 11235, 11267, 11307, 11603, 11620, 11627, 11656, 11667, 11748, 11752, 11811, 11812, 11908, 11928, 12072, 12083, 12243, 12292, 12376, 12408, 12435, 12507, 12552, 12628, 12760, 12808, 12820, 12891, 13035, 13060, 13080, 13252, 13348, 13395, 13427, 13444, 13512, 13531, 13539, 13540, 13587, 13611, 13668, 13699, 13732, 13780, 13912, 14035, 14043, 14212, 14235, 14260, 14392, 14523, 14532, 14536, 14539, 14555, 14595, 14611, 14632, 14835, 14907, 14952, 14968, 14980, 15019, 15112, 15267, 15339, 15411, 15460, 15483, 15528, 15555, 15595, 15640, 15652, 15747, 15748, 15828, 15843, 15931, 15940, 15988, 16107, 16132, 16315, 16360, 16468, 16563, 16795, 16827, 16872, 16888, 16907, 16948, 17032, 17043, 17059, 17092, 17283, 17560, 17572, 17620, 17668, 17752, 17812, 17843, 18040, 18052, 18088, 18132, 18148, 18340, 18507, 18568, 18579, 18595, 18627, 18628, 18667, 18763, 18795, 18811, 18867, 18868, 18915, 19203, 19528, 19579, 19587, 19627, 19768, 19803, 19912, 19915, 20260, 20307, 20355, 20427, 20491, 20659, 20692, 20728, 20803, 20932, 20955, 20980, 20995, 21112, 21172, 21352, 21443, 21448, 21603, 21747, 21963, 21988, 22072, 22107, 22180, 22323, 22339, 22803, 22852, 22867, 22939, 23032, 23035, 23107, 23115, 23188, 23235, 23307, 23368, 23752, 23907, 23995, 24115, 24123, 24292, 24315, 24388, 24595, 24627, 24628, 24643, 24915, 24952, 24955, 25048, 25195, 25347, 25467, 25683, 25707, 25732, 25755, 25795, 25915, 25923, 25972, 25987, 26035, 26187, 26395, 26427, 26467, 26643, 26728, 26995, 27115, 27163, 27267, 27435, 27448, 27523, 27643, 27652, 27907, 28243, 28315, 28347, 28372, 28459, 28747, 28891, 29128, 29283, 29323, 29395, 29563, 29659, 29668, 29755, 29923, 30088, 30163, 30363, 30387, 30523, 30667, 30739, 30907, 30955, 30979, 31252, 31348, 31579, 31683, 31795, 31915, 32008, 32043, 32155, 32547, 32635, 32883, 33067, 33187, 33883, 34203, 34363, 34827, 34923, 36003, 36043, 36547, 36723, 36763, 36883, 37227, 37555, 37563, 38227, 38443, 38467, 39603, 39643, 39787, 40147, 40195, 40747, 41035, 41563, 42067, 42163, 42267, 42387, 42427, 42835, 43483, 44947, 45115, 45787, 46195, 46243, 46267, 47203, 47443, 47707, 48547, 49107, 49267, 49387, 49987, 50395, 52123, 52915, 54307, 55867, 56947, 57523, 60523, 60883, 61147, 62155, 62203, 63043, 64267, 79363, 84043, 84547, 111763 |
25 | 95 | A056987 | 479, 599, 1367, 2887, 3851, 4787, 5023, 5503, 5843, 7187, 7283, 7307, 7411, 8011, 8179, 9227, 9923, 10099, 11059, 11131, 11243, 11867, 12211, 12379, 12451, 12979, 14011, 14923, 15619, 17483, 18211, 19267, 19699, 19891, 20347, 21107, 21323, 21499, 21523, 21739, 21787, 21859, 24091, 24571, 25747, 26371, 27067, 27091, 28123, 28603, 28627, 28771, 29443, 30307, 30403, 30427, 30643, 32203, 32443, 32563, 32587, 33091, 34123, 34171, 34651, 34939, 36307, 37363, 37747, 37963, 38803, 39163, 44563, 45763, 48787, 49123, 50227, 51907, 54667, 55147, 57283, 57667, 57787, 59707, 61027, 62563, 63067, 64747, 66763, 68443, 69763, 80347, 85243, 89083, 93307 |
The number of negative discriminants having class number 1, 2, 3, ... are 9, 18, 16, 54, 25, 51, 31, ... (OEIS A046125). The largest negative discriminants having class numbers 1, 2, 3, ... are 163, 427, 907, 1555, 2683, ... (OEIS A038552).
The discriminants
corresponding to real quadratic fields are 5, 8, 12, 13, 17, 21, 24, 28, 29, 33,
37, 40, 41, 44, 53, ... (OEIS A003658), corresponding
to class numbers
,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, ... (OEIS A003652).
The table below gives lists of the first few positive fundamental discriminants
having small class numbers
, corresponding to real
quadratic fields, augmenting the table of Cohn (1980, pp. 271-274) by including
terms divisible by 4 (Cohen 1993, pp. 516-519; Cohen 2000, pp. 534-537).
In fact, the discriminant of all quadratic number fields is squarefree except for
a possible factor of 4.
OEIS | ||
1 | A003656 | 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53, 56, 57, 61, ... |
2 | A094619 | 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165, 168, 185, 204, ... |
3 | A094612 | 229, 257, 316, 321, 469, 473, 568, 733, 761, 892, 993, 1016, 1101, ... |
4 | A094613 | 145, 328, 445, 505, 520, 680, 689, 777, 780, 793, 840, 876, 897, 901, ... |
5 | A094614 | 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, 1996, 2081, 2153, 2908, ... |
The smallest
such that the real quadratic field with discriminant
has class
for
, 2, ... are 5, 40, 229, 145, 401, 697, 577, 904, 1129, ...
(OEIS A081364).