For a given ,
determine a complete list of fundamental binary
quadratic form discriminants such that the class number
is given by .
Heegner (1952) gave a solution for , but it was not completely accepted due to a number of apparent
gaps. However, subsequent examination of Heegner's proof showed it to be "essentially"
correct (Conway and Guy 1996). Conway and Guy (1996) therefore call the nine values
of
having
where
is the binary quadratic form discriminant
corresponding to an quadratic field (, , , , , , , , and ; OEIS A003173) the
Heegner numbers. The Heegner
numbers have a number of fascinating properties.
Stark (1967) and Baker (1966) gave independent proofs of the fact that only nine such numbers exist; both proofs were accepted. Baker (1971) and Stark (1975) subsequently
and independently solved the generalized class number problem completely for .
Oesterlé (1985) solved the case , and Arno (1992) solved the case . Wagner (1996) solved the cases , 6, and 7. Arno et al. (1993) solved the problem
for odd satisfying . Using extensive computations, Watkins (2004)
has solved the problem for all .
Arno, S. "The Imaginary Quadratic Fields of Class Number 4." Acta Arith.40, 321-334, 1992.Arno, S.; Robinson,
M. L.; and Wheeler, F. S. "Imaginary Quadratic Fields with Small Odd
Class Number." Dec. 1993. http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/.Baker,
A. "Linear Forms in the Logarithms of Algebraic Numbers. I." Mathematika13,
204-216, 1966.Baker, A. "Imaginary Quadratic Fields with Class
Number 2." Ann. Math.94, 139-152, 1971.Conway, J. H.
and Guy, R. K. "The Nine Magic Discriminants." In The
Book of Numbers. New York: Springer-Verlag, pp. 224-226, 1996.Goldfeld,
D. M. "Gauss' Class Number Problem for Imaginary Quadratic Fields."
Bull. Amer. Math. Soc.13, 23-37, 1985.Heegner, K. "Diophantische
Analysis und Modulfunktionen." Math. Z.56, 227-253, 1952.Heilbronn,
H. A. and Linfoot, E. H. "On the Imaginary Quadratic Corpora of Class-Number
One." Quart. J. Math. (Oxford)5, 293-301, 1934.Ireland,
K. and Rosen, M. A
Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag,
p. 192, 1990.Lehmer, D. H. "On Imaginary Quadratic Fields
whose Class Number is Unity." Bull. Amer. Math. Soc.39, 360,
1933.Montgomery, H. and Weinberger, P. "Notes on Small Class Numbers."
Acta. Arith.24, 529-542, 1974.Oesterlé, J. "Nombres
de classes des corps quadratiques imaginaires." Astérique121-122,
309-323, 1985.Oesterlé, J. "Le problème de Gauss
sur le nombre de classes." Enseign Math.34, 43-67, 1988.Serre,
J.-P. ."
Math. Medley13, 1-10, 1985.Shanks, D. "On Gauss's
Class Number Problems." Math. Comput.23, 151-163, 1969.Sloane,
N. J. A. Sequence A003173/M0827
in "The On-Line Encyclopedia of Integer Sequences."Stark,
H. M. "A Complete Determination of the Complex Quadratic Fields of Class
Number One." Michigan Math. J.14, 1-27, 1967.Stark,
H. M. "On Complex Quadratic Fields with Class Number Two." Math.
Comput.29, 289-302, 1975.Wagner, C. "Class Number 5,
6, and 7." Math. Comput.65, 785-800, 1996.Watkins,
M. "Class Numbers of Imaginary Quadratic Fields." Math. Comput.73,
907-938, 2004.