TOPICS
Search

Tschirnhausen Cubic


TschirnhausenCubic

The Tschirnhausen cubic is a plane curve given by the polar equation

 r=asec^3(1/3theta).
(1)

Letting theta=3tan^(-1)t gives the parametric equations

x=a(1-3t^2)
(2)
y=at(3-t^2)
(3)

or

x=3a(t^2-3)
(4)
y=at(t^2-3).
(5)

(Lawrence 1972, p. 88).

Eliminating t from the above equations gives the Cartesian equations

27ay^2=(a-x)(x+8a)^2
(6)
27ay^2=x^2(x+9a)
(7)

(Lawrence 1972, p. 88).

The curve is also known as Catalan's trisectrix and l'Hospital's cubic. The name Tschirnhaus's cubic is given in R. C. Archibald's 1900 paper attempting to classify curves (MacTutor Archive).

TschirnhausenCubicLoop

The curve has a loop, illustrated above, corresponding to t in [-sqrt(3),sqrt(3)] in the above parametrization. The area of the loop is given by

A=1/2int(xy^'-yx^')dt
(8)
=1/2a^2int_(-sqrt(3))^(sqrt(3))3(1+t^2)^2dt
(9)
=a^2int_0^(sqrt(3))3(1+t^2)^2dt
(10)
=(72)/5a^2sqrt(3),
(11)

(Lawrence 1972, p. 89).

In the first parametrization, the arc length, curvature, and tangential angle as a function of t are

s(t)=at(3+t^2)
(12)
kappa(t)=2/(3a(1+t^2)^2)
(13)
phi(t)=2tan^(-1)t.
(14)

The curve has a single ordinary double point located at (-8a,0) in the parametrization of equations (◇) and (◇).

The Tschirnhausen cubic is the negative pedal curve of a parabola with respect to the focus and the catacaustic of a parabola with respect to a point at infinity perpendicular to the symmetry axis.


See also

Conchoid of de Sluze, Conchoid of Nicomedes, Fish Curve, Maclaurin Trisectrix, Right Strophoid, Strophoid, Tschirnhausen Cubic Catacaustic, Tschirnhausen Cubic Pedal Curve

Explore with Wolfram|Alpha

References

Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 87-90, 1972.Loy, J. "Trisection of an Angle." http://www.jimloy.com/geometry/trisect.htm#curves.MacTutor History of Mathematics Archive. "Tschirnhaus's Cubic." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Tschirnhaus.html.

Cite this as:

Weisstein, Eric W. "Tschirnhausen Cubic." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TschirnhausenCubic.html

Subject classifications