TOPICS
Search

Arc Length


Arc length is defined as the length along a curve,

 s=int_gamma|dl|,
(1)

where dl is a differential displacement vector along a curve gamma. For example, for a circle of radius r, the arc length between two points with angles theta_1 and theta_2 (measured in radians) is simply

 s=r|theta_2-theta_1|.
(2)

Defining the line element ds^2=|dl|^2, parameterizing the curve in terms of a parameter t, and noting that ds/dt is simply the magnitude of the velocity with which the end of the radius vector r moves gives

 s=int_a^bds=int_a^b(ds)/(dt)dt=int_a^b|r^'(t)|dt.
(3)

In polar coordinates,

 dl=r^^dr+rtheta^^dtheta=((dr)/(dtheta)r^^+rtheta^^)dtheta,
(4)

so

ds=|dl|=sqrt(r^2+((dr)/(dtheta))^2)dtheta
(5)
s=int|dl|=int_(theta_1)^(theta_2)sqrt(r^2+((dr)/(dtheta))^2)dtheta.
(6)

In Cartesian coordinates,

dl=dxx^^+dyy^^
(7)
ds=|dl|
(8)
=sqrt(dx^2+dy^2)
(9)
=sqrt(((dy)/(dx))^2+1)dx.
(10)

Therefore, if the curve is written

 r(x)=xx^^+f(x)y^^,
(11)

then

 s=int_a^bsqrt(1+f^('2)(x))dx.
(12)

If the curve is instead written

 r(t)=x(t)x^^+y(t)y^^,
(13)

then

 s=int_a^bsqrt(x^('2)(t)+y^('2)(t))dt.
(14)

In three dimensions,

 r(t)=x(t)x^^+y(t)y^^+z(t)z^^,
(15)

so

 s=int_a^bsqrt(x^('2)(t)+y^('2)(t)+z^('2)(t))dt.
(16)

The arc length of the polar curve r=r(theta) is given by

 s=int_(theta_1)^(theta_2)sqrt(r^2+((dr)/(dtheta))^2)dtheta.
(17)

See also

Curvature, Geodesic, Normal Vector, Radius of Curvature, Radius of Torsion, Speed, Surface Area, Tangential Angle, Tangent Vector, Torsion, Velocity Explore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Arc Length." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ArcLength.html

Subject classifications