TOPICS
Search

Mean Line Segment Length


The mean line segment length l^_ is the average length of a line segment in line segment picking within some given shape. As summarized in the following table (where Delta(3) denotes the Robbins constant and Delta(n) its generalization to dimension n), it is possible to compute the mean line segment length in closed form for line segment picking for some simple shapes.

shapel^_normalizationreference
(3,4,5) triangle line picking(341)/(375)+(2432ln2)/(5625)+(567ln3)/(2500)edge lengths 3, 4, 5E. Weisstein (Aug. 6-9, 2010), A. G. Murray (Apr. 4, 2020)
30-60-90 triangle line picking(17)/(120)+(sqrt(3))/(40)+(9ln3)/(160)+(9+8sqrt(3))/(720)ln(2+sqrt(3))unit hypotenuseE. Weisstein, M. Trott, A. Strzebonski (Aug. 25, 2010), A. G. Murray (Apr. 4, 2020)
ball line picking(36)/(35)unit radius
circle line picking4/piunit radius
cube line pickingDelta(3) (Robbins constant)unit volume (= unit edge length)Robbins (1978), Bailey et al. (2007)
disk line picking(128)/(45pi)unit radius
equilateral triangle line picking1/5+(3ln3)/(20)unit edge lengthE. Weisstein (Mar. 16, 2004), A. G. Murray (Apr. 4, 2020)
hypercube line pickingDelta(n)unit edge lengthBailey et al. (2007)
isosceles right triangle line picking(2sqrt(2)+1)/(15)+(4+sqrt(2))/(30)sinh^(-1)1edges lengths 1, 1, sqrt(2)M. Trott (Mar. 10, 2004), A. G. Murray (Apr. 4, 2020)
line line picking1/3unit segment length
sphere line picking4/3unit radiusSolomon (1978, p. 163)
square line pickingDelta(2)=(2+sqrt(2))/(15)+1/3sinh^(-1)1unit edge length
tetrahedron line picking1/7-(37pi)/(315sqrt(2))+(2sqrt(2))/(15)tan^(-1)(sqrt(2))+(113ln3)/(420)unit edge lengthBeck (2023)

In some cases, a closed form can also be obtained for the probability density function of line segment lengths.

Beck (2023) found closed forms for the mean line segment lengths for all five Platonic solids.


See also

Ball Line Picking, Circle Line Picking, Cube Line Picking, Disk Line Picking, Hypercube Line Picking, Line Segment Picking, Line Line Picking, Line Point Picking, Line Segment, Mean Tetrahedron Volume, Mean Triangle Area, Square Line Picking, Sphere Line Picking, Triangle Line Picking

Explore with Wolfram|Alpha

References

Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "Box Integrals." J. Comput. Appl. Math. 206, 196-208, 2007.Beck, D. "Mean Distance in Polyhedra." 22 Sep 2023. https://arxiv.org/abs/2309.13177.Robbins, D. "Average Distance between Two Points in a Box." Amer. Math. Monthly 85, 278, 1978.Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, 1978.

Cite this as:

Weisstein, Eric W. "Mean Line Segment Length." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MeanLineSegmentLength.html

Subject classifications