TOPICS
Search

3, 4, 5 Triangle


3,4,5Triangle

The triangle with edge lengths 3, 4, and 5 is the right triangle with smallest possible integer lengths and corresponds to the Pythagorean triple (3,4,5) where the legs have lengths 3 and 4 and the hypotenuse length 5. It satisfies the Pythagorean theorem since

 3^2+4^2=5^2.
(1)

It has inradius

 r=1.
(2)

Triangle line picking for points picked at random in a 3, 4, 5 triangle gives a mean line segment length of

l^__(Delta(3,4,5))=1/(22500)(20460+9728ln2+5103ln3)
(3)
=1.4581846...
(4)

(E. W. Weisstein, Aug. 6-9, 2010; OEIS A180307).


See also

Pythagorean Theorem, Pythagorean Triple, Right Triangle, Triangle Line Picking

Explore with Wolfram|Alpha

References

Sloane, N. J. A. Sequence A180307 in "The On-Line Encyclopedia of Integer Sequences."

Cite this as:

Weisstein, Eric W. "3, 4, 5 Triangle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/345Triangle.html

Subject classifications