TOPICS
Search

Kampé de Fériet Function


The Kampé de Fériet function is a special function that generalizes the generalized hypergeometric function to two variables and includes the Appell hypergeometric function F_1(alpha;beta,beta^';gamma;x,y) as a special case. The Kampé de Fériet function can represent derivatives of generalized hypergeometric functions with respect to their parameters, as well as indefinite integrals of two and three Meijer G-functions. Exton and Krupnikov (1998) have derived a large collection of formulas involving this function.

Kampé de Fériet functions are written in the notation

 F_(q,s,u)^(p,r,t)(c_p; d_q|a_r; b_s|alpha_t; beta_u|x,y).
(1)

Special cases include

 F_(1,0,0)^(1,1,1)(1/2; 3/2|1/2; -|-1/2; -|x,y)=1/(sqrt(x))E(sin^(-1)(sqrt(x)),sqrt(y/x))
(2)
 F_(1,0,0)^(1,1,1)(1/2; 3/2|1/2; -|1/2; -|x,y)=1/(sqrt(x))F(sin^(-1)(sqrt(x)),sqrt(y/x))
(3)

for x!=0 and |x|,|y|<=1, where E(x,k) is the incomplete elliptic integral of the second kind and F(x,k) is the incomplete elliptic integral of the first kind, as well as

 F_(1,0,0)^(1,1,1)(1/2; 1|1; -|1/2; -|x,y)=2/piPi(1;x,sqrt(y))
(4)

for |x|,|y|<1, where Pi(n;x,k) is the incomplete elliptic integral of the third kind (Exton and Krupnikov 1998, p. 1). Additional identities are given by

 F_(q,s,u)^(1+p,r,t)(0,c_p; d_q|a_r; b_s|alpha_t; beta_u|x,y)=1
(5)
 F_(q,s,u)^(p,r,t)(c_p; d_q|a_r; b_s|alpha_t; beta_u|x,0)=F_(q+s)^(p+r)(c_p,a_r; d_q,d_s|x)
(6)
 F_(q,s,u)^(p,r,1+t)(c_p; d_q|a_r; b_s|0,alpha_t; beta_u|x,y)=F_(q+s)^(p+r)(c_p,a_r; d_q,d_s|x)
(7)

(Exton and Krupnikov 1998, p. 3).


See also

Appell Hypergeometric Function, Fox H-Function, Generalized Hypergeometric Function, Horn Function, Lauricella Functions, MacRobert's E-Function, Meijer G-Function

Explore with Wolfram|Alpha

References

Appell, P. Sur les fonctions hypergéométriques de plusieurs variables. Paris: Gauthier-Villars, 1925.Appell, P. and Kampé de Fériet, J. Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite. Paris: Gauthier-Villars, 1926.Exton, H. "The Kampé de Fériet Function." §1.3.2 in Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs. Chichester, England: Ellis Horwood, pp. 24-25, 1978.Exton, H. Multiple Hypergeometric Functions and Applications. Chichester, England: Ellis Horwood, 1976.Exton, H. and Krupnikov, E. D. A Register of Computer-Oriented Reduction Identities for the Kampé de Fériet Function. Draft manuscript. Novosibirsk, 1998.Kampé de Fériet, J. La fonction hypergéométrique. Paris: Gauthier-Villars, 1937.Ragab, F. J. "Expansions of Kampe De Feriet's Double Hypergeometric Function of Higher Order." J. reine angew. Math. 212, 113-119, 1963.Srivastava, H. M., Karlsson, P. W. Multiple Gaussian Hypergeometric Series. Chichester, England: Ellis Horwood, 1985.

Referenced on Wolfram|Alpha

Kampé de Fériet Function

Cite this as:

Weisstein, Eric W. "Kampé de Fériet Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/KampedeFerietFunction.html

Subject classifications