Let .
The incomplete elliptic integral of the third kind is then defined as
where
is a constant known as the elliptic characteristic
and
is the elliptic modulus. It is implemented in
the Wolfram Language as EllipticPi[n,
phi, m].
The complete elliptic integral of the third kind
|
(3)
|
is illustrated above.
See also
Complete Elliptic Integral of the Third Kind,
Elliptic
Integral of the First Kind,
Elliptic
Integral of the Second Kind,
Elliptic
Integral Singular Value,
Elliptic Modulus
Related Wolfram sites
http://functions.wolfram.com/EllipticIntegrals/EllipticPi3/
Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). "Elliptic Integrals" and "Elliptic Integrals of the Third Kind." Ch. 17
and §17.7 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 587-607, 1972.Tölke, F. "Normalintegrale
dritter Gattung. Legendresche -Funktion. Zurückführung des allgemeinen elliptischen
Integrals auf Normalintegrale erster, zweiter, und dritter Gattung." Ch. 7
in Praktische
Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische
Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen.
Berlin: Springer-Verlag, pp. 100-144, 1967.Referenced on Wolfram|Alpha
Elliptic Integral of
the Third Kind
Cite this as:
Weisstein, Eric W. "Elliptic Integral of the Third Kind." From MathWorld--A Wolfram Web Resource.
https://mathworld.wolfram.com/EllipticIntegraloftheThirdKind.html
Subject classifications