The Fox -function
is a very general function defined by
where ,
, , and are complex numbers
such that no pole of for , 2, ..., coincides with any pole of for , 2, ..., (Prudnikov et al. 1990, p. 626). In addition , is a contour
in the complex -plane
from
to
such that
and
lie to the right and left of , respectively.
Al-Musallam, F. A. and Tuan, V. K. "-Function with Complex Parameters I:
Existence." Int. J. Math. Math. Sci.25, 571-586, 2001a.Al-Musallam,
F. A. and Tuan, V. K. "-Function with Complex Parameters II: Evaluation." Int.
J. Math. Math. Sci.25, 727-743, 2001b.Buschman, R. G.
"-Functions
of Two Variables, I." Indian J. Math.20, 139-153, 1978.Buschman,
R. G. "Analytic Domains for Multivariable -Functions." Pure Appl. Math. Sci.16, 23-27,
1982.Carter, B. D. and Springer, M. D. "The Distribution
of Products, Quotients, and Powers of Independent -Functions." SIAM J. Appl. Math.33, 542-558,
1977.Fox, C. "The and -Functions as Symmetrical Fourier Kernels." Trans.
Amer. Math. Soc.98, 395-429, 1961.Hai, N.; Marichev, O. I.;
and Buschman, R. G. "Theory of the General -Function of Two Variables." Rocky Mtn. J. Math.22,
1317-1327, 1992.Mathai, A. M. and Saxena, R. K. The -Function with Applications in Statistics and Other Disciplines.0470263806
New Delhi, India: Wiley, 1978.Prudnikov, A. P.; Brychkov, Yu. A.;
and Marichev, O. I. "Evaluation of Integrals and the Mellin Transform."
Itogi Nauki i Tekhniki, Seriya Matemat. Analiz27, 3-146, 1989.Prudnikov,
A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Fox -Function ." §8.3 in Integrals
and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach,
pp. 626-629, 1990.
Srivastava, H. M.; Gupta, K. C.; and Goyal, S. P. The -Function of One and Two Variables
with Applications. New Delhi, India: South Asian Publ., 1982.