TOPICS
Search

Appell Hypergeometric Function


The Appell hypergeometric functions are a formal extension of the hypergeometric function to two variables, resulting in four kinds of functions (Appell 1925; Picard 1880ab, 1881; Goursat 1882; Whittaker and Watson 1990, Ex. 22, p. 300),

F_1(alpha;beta,beta^';gamma;x,y)=sum_(m=0)^(infty)sum_(n=0)^(infty)((alpha)_(m+n)(beta)_m(beta^')_n)/(m!n!(gamma)_(m+n))x^my^n
(1)
F_2(alpha;beta,beta^';gamma,gamma^';x,y)=sum_(m=0)^(infty)sum_(n=0)^(infty)((alpha)_(m+n)(beta)_m(beta^')_n)/(m!n!(gamma)_m(gamma^')_n)x^my^n
(2)
F_3(alpha,alpha^';beta,beta^';gamma;x,y)=sum_(m=0)^(infty)sum_(n=0)^(infty)((alpha)_m(alpha^')_n(beta)_m(beta^')_n)/(m!n!(gamma)_(m+n))x^my^n
(3)
F_4(alpha;beta;gamma,gamma^';x,y)=sum_(m=0)^(infty)sum_(n=0)^(infty)((alpha)_(m+n)(beta)_(m+n))/(m!n!(gamma)_m(gamma^')_n)x^my^n.
(4)

These double series are absolutely convergent for

 {F_1   for |x|<1,|y|<1; F_2   for |x|+|y|<1; F_3   for |x|<1,|y|<1; F_4   for |x|^(1/2)+|y|^(1/2)<1.
(5)

Appell defined the functions in 1880 and they were subsequently studied by Picard in 1881. The functions F_1, F_2, and F_3 can be expressed in terms of double integrals as

(Gamma(beta)Gamma(beta^')Gamma(gamma-beta-beta^'))/(Gamma(gamma))F_1(alpha;beta,beta^';gamma;x,y)=int_0^1int_0^(1-v)u^(beta-1)v^(beta^'-1)(1-u-v)^(gamma-beta-beta^'-1)(1-ux-vy)^(-alpha)dudv
(6)
(Gamma(beta)Gamma(beta^')Gamma(gamma-beta)Gamma(gamma^'-beta^'))/(Gamma(gamma)Gamma(gamma^'))F_2(alpha;beta,beta^';gamma,gamma^';x,y)=int_0^1int_0^1u^(beta-1)v^(beta^'-1)(1-u)^(gamma-beta-1)(1-v)^(gamma^'-beta-1)(1-ux-vy)^(-alpha)dudv
(7)
(Gamma(beta)Gamma(beta^')Gamma(gamma-beta-beta^'))/(Gamma(gamma))F_3(alpha,alpha^';beta,beta^';gamma;x,y)=int_0^1int_0^(1-v)u^(beta-1)v^(beta^'-1)(1-u-v)^(gamma-beta-beta^'-1)(1-ux)^(-alpha)(1-vy)^(-alpha^')dudv
(8)

(Bailey 1934, pp. 76-77). There appears to be no simple integral representation of this type for the function F_4 (Bailey 1934, p. 77).

The function F_1 can also be expressed by the simple integral

 (Gamma(alpha)Gamma(gamma-alpha))/(Gamma(gamma))F_1(alpha;beta,beta^';gamma;x,y)=int_0^1u^(alpha-1)(1-u)^(gamma-alpha-1)(1-ux)^(-beta)(1-uy)^(-beta^')du
(9)

(Bailey 1934, p. 77), for R[alpha]>0 and R[gamma-alpha]>0.

The Appell functions are special cases of the Kampé de Fériet function, and are the first four in the set of Horn functions. The Appel functions are implemented in the Wolfram Language as AppellF1[a, b1, b2, c, x, y], AppellF2[a, b1, b2, c1, c2, x, y], AppellF3[a1, a2 b1, b2, c, x, y], and AppellF4[a, b, c1, c2, x, y].

For general complex parameters, the F_1 function can be written as the contour integral

 F_1(a;b_1,b_2,c;z_1,z_2)=(Gamma(c))/((2pii)^2Gamma(a)Gamma(b_1)Gamma(b_2))int_(L^*)int_L(Gamma(a-s-t)Gamma(s)Gamma(b_1-s)Gamma(t)Gamma(b_2-t))/(Gamma(c-s-t))(-z_1)^(-s)(-z_2)^(-t)dsdt
(10)

for |arg(-z_1)|,|arg(-z_2)|<pi, where Gamma(z) is a gamma function and L and L^* are complicated contours related to those used in the definition of the Meijer G-function. In fact, the four functions can also be expressed as double contour integrals taken along contours of the Barnes type (Bailey 1934).

In particular, the general integral

 int(a+bsinx+ccosx)^ndx=CF_1(n+1;1/2,1/2;n+2;(a+ccosx+bsinx)/(a-bsqrt(1+(c^2)/(b^2))),(a+ccosx+bsinx)/(a+bsqrt(1+(c^2)/(b^2)))),
(11)

where

 C=sec[x+tan^(-1)(c/b)](a+ccosx+bsinx)^(n+1)[b(n+1)sqrt(1+(c^2)/(b^2))]^(-1)sqrt((b(sqrt(1+(c^2)/(b^2))-sinx)-ccosx)/(bsqrt(1+(c^2)/(b^2))+a))sqrt((b(sqrt(1+(c^2)/(b^2))+sinx)+ccosx)/(bsqrt(1+(c^2)/(b^2))-a)),
(12)

has a closed form in terms of F_1.

Integrals that result in particularly nice closed forms involving the F_1 function include

I_1=int_0^(2pi)sqrt((1-pcos^2t)(1-qcos^2t))dt
(13)
=2piF_1(1/2;-1/2,-1/2;1;p,q)
(14)
I_2=int_0^(2pi)sqrt((1-pcos^2t)(1-qcos^2t))sin^2tdt
(15)
=piF_1(1/2;-1/2,-1/2;2;p,q),
(16)

which arise in computing area and geometric centroid of the interior of the cranioid curve.

F_1(alpha;beta,beta^';gamma;x,y) reduces to the hypergeometric function in the cases

F_1(alpha;beta,beta^';gamma;0,y)=_2F_1(alpha,beta^';gamma;y)
(17)
F_1(alpha;beta,beta^';gamma;x,0)=_2F_1(alpha,beta;gamma;x).
(18)

In addition,

F_1(alpha;beta,beta^';gamma,x,x)=(1-x)^(gamma-alpha-beta-beta^')_2F_1(gamma-alpha,-beta+gamma-beta^';gamma;x)
(19)
=_2F_1(alpha,beta+beta^';gamma;x)
(20)
F_1(alpha;beta,beta^';beta+beta^';x,y)=(1-y)^(-alpha)_2F_1(alpha,beta;beta+beta^';(x-y)/(1-y)),
(21)

where _2F_1(a,b;c;z) is a hypergeometric function.


See also

Elliptic Integral, Horn Function, Hypergeometric Function, Kampé de Fériet Function, Lauricella Functions

Related Wolfram sites

http://functions.wolfram.com/HypergeometricFunctions/AppellF1/

Explore with Wolfram|Alpha

References

Appell, P. "Sur les fonctions hypergéométriques de plusieurs variables." In Mémoir. Sci. Math. Paris: Gauthier-Villars, 1925.Appell, P. and Kampé de Fériet, J. Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite. Paris: Gauthier-Villars, 1926.Bailey, W. N. "A Reducible Case of the Fourth Type of Appell's Hypergeometric Functions of Two Variables." Quart. J. Math. (Oxford) 4, 305-308, 1933.Bailey, W. N. "On the Reducibility of Appell's Function F_4." Quart. J. Math. (Oxford) 5, 291-292, 1934.Bailey, W. N. "Appell's Hypergeometric Functions of Two Variables." Ch. 9 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 73-83 and 99-101, 1935.Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, pp. 222 and 224, 1981.Exton, H. Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs. Chichester, England: Ellis Horwood, p. 27, 1978.Goursat, E. "Extension du problème de Riemann à des fonctions hypergéométriques de deux variables." Comptes Rendus Acad. Sci. Paris 95, 903 and 1044, 1882.Ishkhanyan, T. "Hypergeometric Functions: From Euler to Appell and Beyond." Jan. 25, 2024. https://blog.wolfram.com/2024/01/25/hypergeometric-functions-from-euler-to-appell-and-beyond/.Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1461, 1980.Picard, E. "Sur une classe de fonctions de deux variables indépendantes." Comptes Rendus Acad. Sci. Paris 90, 1119-1121, 1880a.Picard, E. "Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques." Comptes Rendus Acad. Sci. Paris 90, 1267-1269, 1880b.Picard, E. "Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques." Ann. Ecole Norm. Sup. (2) 10, 305-322, 1881.Watson, G. N. "The Product of Two Hypergeometric Functions." Proc. London Math. Soc. 20, 189-195, 1922.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

Referenced on Wolfram|Alpha

Appell Hypergeometric Function

Cite this as:

Weisstein, Eric W. "Appell Hypergeometric Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AppellHypergeometricFunction.html

Subject classifications