A finite group is a group having finite group order. Examples of finite groups are the modulo multiplication groups, point groups, cyclic groups, dihedral groups, symmetric groups, alternating groups, and so on.
Properties of finite groups are implemented in the Wolfram Language as FiniteGroupData[group, prop].
The classification theorem of finite groups states that the finite simple groups can be classified completely into one of five types.
A convenient way to visualize groups is using so-called cycle graphs, which show the cycle structure of a given abstract group. For example, cycle graphs of the 5 nonisomorphic groups of order 8 are illustrated above (Shanks 1993, p. 85).
Frucht's theorem states that every finite group is the graph automorphism group of a finite undirected graph.
The finite (cyclic) group
forms the subject for the humorous a capella song "Finite
Simple Group (of Order 2)" by the Northwestern University mathematics department
a capella group "The Klein Four."
The following table gives the numbers and names of the distinct groups of group order
for small
.
In the table,
denotes an cyclic group of group
order
,
a group
direct product,
a dihedral group,
the quaternion group,
an alternating
group,
the non-Abelian finite group of order 12 that is not
and not
(and is not the purely rotational subgroup
of the point group
),
the quasihedral (or semihedral) group of order
16 with group presentation
,
the modular group of order 16 with group
presentation
,
the group of order 16 with
group presentation
,
the group of order 16 with group
presentation
,
the group
with group presentation
,
the generalized quaternion
group of order 16 with group presentation
,
a symmetric
group,
the semidirect product of
with
with group presentation
,
the Frobenius group of order
,
the semidirect product of
by
with group presentation
,
the group with group
presentation
,
the group with group
presentation
,
and
the semidirect product of
by
with group presentation
# | Abelian | # | non-Abelian | total | |
1 | 1 | 0 | - | 1 | |
2 | 1 | 0 | - | 1 | |
3 | 1 | 0 | - | 1 | |
4 | 2 | 0 | - | 2 | |
5 | 1 | 0 | - | 1 | |
6 | 1 | 1 | 2 | ||
7 | 1 | 0 | - | 1 | |
8 | 3 | 2 | 5 | ||
9 | 2 | 0 | - | 2 | |
10 | 1 | 1 | 2 | ||
11 | 1 | 0 | - | 1 | |
12 | 2 | 3 | 5 | ||
13 | 1 | 0 | - | 1 | |
14 | 1 | 1 | 2 | ||
15 | 1 | 0 | - | 1 | |
16 | 5 | 9 | 14 | ||
17 | 1 | 0 | - | 1 | |
18 | 2 | 3 | 5 | ||
19 | 1 | 0 | - | 1 | |
20 | 2 | 3 | 5 | ||
21 | 1 | 1 | 2 | ||
22 | 1 | 1 | 2 | ||
23 | 1 | 0 | - | 1 | |
24 | 3 | 12 | 15 | ||
25 | 2 | 0 | - | 2 | |
26 | 1 | 1 | 2 | ||
27 | 3 | 2 | 5 | ||
28 | 2 | 2 | 4 | ||
29 | 1 | 0 | - | 1 | |
30 | 4 | 3 | 4 | ||
31 | 1 | 0 | - | 1 |
The following table lists some properties of small finite groups. Here is again the group order, PG indicates that a group can be
generated by a single permutation, MMG indicates
that a group is a modulo multiplication group,
is the number of conjugacy classes,
is the number of subgroups, and
is the number of normal subgroups. Note that the smallest
groups that are neither permutation nor modulo multiplication groups are
,
, and
.
group | Abelian | PG | MMG | counts of | ||||||
1 | yes | yes | yes | 1 | 1 | 1 | 1 | 1 | 1 | |
2 | yes | yes | no | 2 | 2 | 1, 2 | 2 | 1, 2 | ||
3 | yes | yes | yes | 3 | 2 | 1, 3 | 2 | 1, 1, 3 | ||
4 | yes | yes | yes | 4 | 3 | 1, 2, 4 | 3 | 1, 2, 1, 4 | ||
yes | no | yes | 4 | 5 | 1, | 5 | 1, 4, 1, 4 | |||
5 | yes | yes | no | 5 | 2 | 1, 4 | 2 | 1, 1, 1, 1, 5 | ||
6 | yes | yes | yes | 6 | 4 | 1, 2, 3, 6 | 4 | 1, 2, 3, 2, 1, 6 | ||
no | yes | no | 3 | 1, 2, 3 | 6 | 1, | 3 | 1, 4, 3, 4, 1, 6 | ||
7 | yes | yes | no | 7 | 2 | 1, 7 | 2 | 1, 1, 1, 1, 1, 1, 7 | ||
8 | yes | yes | yes | 8 | 4 | 1, 2, 4, 8 | 4 | 1, 2, 1, 4, 1, 2, 1, 8 | ||
yes | no | yes | 8 | 8 | 1, | 4 | 1, 4, 1, 8, 1, 4, 1, 8 | |||
yes | no | yes | 8 | 16 | 1, | 4 | 1, 8, 1, 8, 1, 8, 1, 8 | |||
no | yes | no | 5 | 10 | 1, | 6 | 1, 6, 1, 8, 1, 6, 1, 8 | |||
no | no | no | 5 | 6 | 1, 2, | 6 | 1, 2, 1, 8, 1, 2, 1, 8 | |||
9 | yes | yes | no | 9 | 3 | 1, 3, 9 | 3 | 1, 1, 3, 1, 1, 3, 1, 1, 9 | ||
yes | no | no | ||||||||
10 | yes | yes | yes | 10 | 4 | 1, 2, 5, 10 | 4 | 1, 2, 1, 2, 5, 2, 1, 2, 1, 10 | ||
no | yes | no | 4 | 1, | 8 | 1, | 3 | 1, 6, 1, 6, 5, 6, 1, 6, 1, 10 | ||
11 | yes | yes | no | 11 | 2 | 1, 11 | 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11 | ||
12 | yes | yes | yes | 12 | 6 | 1, 2, 3, 4, 6, 12 | 6 | 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12 | ||
yes | no | yes | 12 | 10 | 1, | 10 | 1, 4, 3, 4, 1, 12, 1, 4, 3, 4, 1, 12 | |||
no | yes | no | 4 | 1, 3, | 10 | 1, | 3 | 1, 4, 9, 4, 1, 12, 1, 4, 9, 4, 1, 12 | ||
no | yes | no | 6 | 16 | 1, | 8 | 1, 8, 3, 8, 1, 12, 1, 8, 3, 8, 1, 12 | |||
no | no | no | 6 | 8 | 1, 2,
3, | 3 | 1, 2, 3, 8, 1, 6, 1, 8, 3, 2, 1, 12 | |||
13 | yes | yes | yes | 13 | 2 | 1, 13 | 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13 | ||
14 | yes | yes | no | 14 | 4 | 1, 2, 7, 14 | 4 | 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14 | ||
no | yes | no | 5 | 1, | 10 | 1,
| 3 | 1, 8, 1, 8, 1, 8, 7, 8, 1, 8, 1, 8, 1, 14 | ||
15 | yes | yes | no | 15 | 4 | 1, 3, 5, 15 | 4 | 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 15 |
The problem of determining the nonisomorphic finite groups of order was first considered by Cayley (1854). There is no known formula to give the number of possible finite groups
as a function of the group
order
.
However, there are simple formulas for special forms of
.
(1)
| |||
(2)
| |||
(3)
| |||
(4)
| |||
(5)
|
where
and
are distinct primes. In addition, there is a beautiful algorithm due to Hölder
(Hölder 1895, Alonso 1976) for determining
for squarefree
, namely
(6)
|
where
is the number of primes
such that
and
(Dennis).
Miller (1930) gave the number of groups for orders 1-100, including an erroneous 297 as the number of groups of group order 64. Senior
and Lunn (1934, 1935) subsequently completed the list up to 215, but omitted 128
and 192. The number of groups of group order 64 was
corrected in Hall and Senior (1964). James et al. (1990) found 2328 groups
in 115 isoclinism families of group
order 128, correcting previous work, and O'Brien (1991) found the number of groups
of group order 256. Currently, the number of groups
is known for orders up to 2047, with the difficult cases of orders 512 (; Eick and O'Brien 1999b), 768 (Besche and Eick
2001ab), and 1024 now put to rest (Conway et al. 2008). The numbers of nonisomorphic
finite groups
of each group order
for the first few hundred orders are given in the table below
(OEIS A000001--the very first sequence). The
number of nonisomorphic groups of orders
for
, 1, ... are 1, 1, 2, 5, 14, 51, 267, 2328, 56092, ... (OEIS
A000679).
The smallest orders
for which there exist
,
2, ... nonisomorphic groups are 1, 4, 75, 28, 8, 42, ... (OEIS A046057).
The incrementally largest number of nonisomorphic finite groups are 1, 2, 5, 14,
15, 51, 52, 267, 2328, ... (OEIS A046058),
which occur for orders 1, 4, 8, 16, 24, 32, 48, 64, 128, ... (OEIS A046059).
Dennis has conjectured that the number of groups
of order
assumes every positive integer as a value an infinite number
of times.
It is simple to determine the number of Abelian groups using the Kronecker decomposition theorem,
and there is at least one Abelian group for every
finite order .
The number
of Abelian groups of group
order
,
2, ... are given by 1, 1, 1, 2, 1, 1, 1, 3, ... (OEIS A000688).
The following table summarizes the total number of finite groups
and the number of Abelian finite groups
for orders
from 1 to 400. A table of orders up to 1000 is given by Royle;
the GAP software package includes a table of the number of finite groups
up to order 2000, excluding 1024. The number of finite groups of a given order is
implemented in the Wolfram Language
as FiniteGroupCount[n].
1 | 1 | 1 | 51 | 1 | 1 | 101 | 1 | 1 | 151 | 1 | 1 |
2 | 1 | 1 | 52 | 5 | 2 | 102 | 4 | 1 | 152 | 12 | 3 |
3 | 1 | 1 | 53 | 1 | 1 | 103 | 1 | 1 | 153 | 2 | 2 |
4 | 2 | 2 | 54 | 15 | 3 | 104 | 14 | 3 | 154 | 4 | 1 |
5 | 1 | 1 | 55 | 2 | 1 | 105 | 2 | 1 | 155 | 2 | 1 |
6 | 2 | 1 | 56 | 13 | 3 | 106 | 2 | 1 | 156 | 18 | 2 |
7 | 1 | 1 | 57 | 2 | 1 | 107 | 1 | 1 | 157 | 1 | 1 |
8 | 5 | 3 | 58 | 2 | 1 | 108 | 45 | 6 | 158 | 2 | 1 |
9 | 2 | 2 | 59 | 1 | 1 | 109 | 1 | 1 | 159 | 1 | 1 |
10 | 2 | 1 | 60 | 13 | 2 | 110 | 6 | 1 | 160 | 238 | 7 |
11 | 1 | 1 | 61 | 1 | 1 | 111 | 2 | 1 | 161 | 1 | 1 |
12 | 5 | 2 | 62 | 2 | 1 | 112 | 43 | 5 | 162 | 55 | 5 |
13 | 1 | 1 | 63 | 4 | 2 | 113 | 1 | 1 | 163 | 1 | 1 |
14 | 2 | 1 | 64 | 267 | 11 | 114 | 6 | 1 | 164 | 5 | 2 |
15 | 1 | 1 | 65 | 1 | 1 | 115 | 1 | 1 | 165 | 2 | 1 |
16 | 14 | 5 | 66 | 4 | 1 | 116 | 5 | 2 | 166 | 2 | 1 |
17 | 1 | 1 | 67 | 1 | 1 | 117 | 4 | 2 | 167 | 1 | 1 |
18 | 5 | 2 | 68 | 5 | 2 | 118 | 2 | 1 | 168 | 57 | 3 |
19 | 1 | 1 | 69 | 1 | 1 | 119 | 1 | 1 | 169 | 2 | 2 |
20 | 5 | 2 | 70 | 4 | 1 | 120 | 47 | 3 | 170 | 4 | 1 |
21 | 2 | 1 | 71 | 1 | 1 | 121 | 2 | 2 | 171 | 5 | 2 |
22 | 2 | 1 | 72 | 50 | 6 | 122 | 2 | 1 | 172 | 4 | 2 |
23 | 1 | 1 | 73 | 1 | 1 | 123 | 1 | 1 | 173 | 1 | 1 |
24 | 15 | 3 | 74 | 2 | 1 | 124 | 4 | 2 | 174 | 4 | 1 |
25 | 2 | 2 | 75 | 3 | 2 | 125 | 5 | 3 | 175 | 2 | 2 |
26 | 2 | 1 | 76 | 4 | 2 | 126 | 16 | 2 | 176 | 42 | 5 |
27 | 5 | 3 | 77 | 1 | 1 | 127 | 1 | 1 | 177 | 1 | 1 |
28 | 4 | 2 | 78 | 6 | 1 | 128 | 2328 | 15 | 178 | 2 | 1 |
29 | 1 | 1 | 79 | 1 | 1 | 129 | 2 | 1 | 179 | 1 | 1 |
30 | 4 | 1 | 80 | 52 | 5 | 130 | 4 | 1 | 180 | 37 | 4 |
31 | 1 | 1 | 81 | 15 | 5 | 131 | 1 | 1 | 181 | 1 | 1 |
32 | 51 | 7 | 82 | 2 | 1 | 132 | 10 | 2 | 182 | 4 | 1 |
33 | 1 | 1 | 83 | 1 | 1 | 133 | 1 | 1 | 183 | 2 | 1 |
34 | 2 | 1 | 84 | 15 | 2 | 134 | 2 | 1 | 184 | 12 | 3 |
35 | 1 | 1 | 85 | 1 | 1 | 135 | 5 | 3 | 185 | 1 | 1 |
36 | 14 | 4 | 86 | 2 | 1 | 136 | 15 | 3 | 186 | 6 | 1 |
37 | 1 | 1 | 87 | 1 | 1 | 137 | 1 | 1 | 187 | 1 | 1 |
38 | 2 | 1 | 88 | 12 | 3 | 138 | 4 | 1 | 188 | 4 | 2 |
39 | 2 | 1 | 89 | 1 | 1 | 139 | 1 | 1 | 189 | 13 | 3 |
40 | 14 | 3 | 90 | 10 | 2 | 140 | 11 | 2 | 190 | 4 | 1 |
41 | 1 | 1 | 91 | 1 | 1 | 141 | 1 | 1 | 191 | 1 | 1 |
42 | 6 | 1 | 92 | 4 | 2 | 142 | 2 | 1 | 192 | 1543 | 11 |
43 | 1 | 1 | 93 | 2 | 1 | 143 | 1 | 1 | 193 | 1 | 1 |
44 | 4 | 2 | 94 | 2 | 1 | 144 | 197 | 10 | 194 | 2 | 1 |
45 | 2 | 2 | 95 | 1 | 1 | 145 | 1 | 1 | 195 | 2 | 1 |
46 | 2 | 1 | 96 | 231 | 7 | 146 | 2 | 1 | 196 | 17 | 4 |
47 | 1 | 1 | 97 | 1 | 1 | 147 | 6 | 2 | 197 | 1 | 1 |
48 | 52 | 5 | 98 | 5 | 2 | 148 | 5 | 2 | 198 | 10 | 2 |
49 | 2 | 2 | 99 | 2 | 2 | 149 | 1 | 1 | 199 | 1 | 1 |
50 | 5 | 2 | 100 | 16 | 4 | 150 | 13 | 2 | 200 | 52 | 6 |
201 | 2 | 1 | 251 | 1 | 1 | 301 | 2 | 1 | 351 | 14 | 3 |
202 | 2 | 1 | 252 | 46 | 4 | 302 | 2 | 1 | 352 | 195 | 7 |
203 | 2 | 1 | 253 | 2 | 1 | 303 | 1 | 1 | 353 | 1 | 1 |
204 | 12 | 2 | 254 | 2 | 1 | 304 | 42 | 5 | 354 | 4 | 1 |
205 | 2 | 1 | 255 | 1 | 1 | 305 | 2 | 1 | 355 | 2 | 1 |
206 | 2 | 1 | 256 | 56092 | 22 | 306 | 10 | 2 | 356 | 5 | 2 |
207 | 2 | 2 | 257 | 1 | 1 | 307 | 1 | 1 | 357 | 2 | 1 |
208 | 51 | 5 | 258 | 6 | 1 | 308 | 9 | 2 | 358 | 2 | 1 |
209 | 1 | 1 | 259 | 1 | 1 | 309 | 2 | 1 | 359 | 1 | 1 |
210 | 12 | 1 | 260 | 15 | 2 | 310 | 6 | 1 | 360 | 162 | 6 |
211 | 1 | 1 | 261 | 2 | 2 | 311 | 1 | 1 | 361 | 2 | 2 |
212 | 5 | 2 | 262 | 2 | 1 | 312 | 61 | 3 | 362 | 2 | 1 |
213 | 1 | 1 | 263 | 1 | 1 | 313 | 1 | 1 | 363 | 3 | 2 |
214 | 2 | 1 | 264 | 39 | 3 | 314 | 2 | 1 | 364 | 11 | 2 |
215 | 1 | 1 | 265 | 1 | 1 | 315 | 4 | 2 | 365 | 1 | 1 |
216 | 177 | 9 | 266 | 4 | 1 | 316 | 4 | 2 | 366 | 6 | 1 |
217 | 1 | 1 | 267 | 1 | 1 | 317 | 1 | 1 | 367 | 1 | 1 |
218 | 2 | 1 | 268 | 4 | 2 | 318 | 4 | 1 | 368 | 42 | 5 |
219 | 2 | 1 | 269 | 1 | 1 | 319 | 1 | 1 | 369 | 2 | 2 |
220 | 15 | 2 | 270 | 30 | 3 | 320 | 1640 | 11 | 370 | 4 | 1 |
221 | 1 | 1 | 271 | 1 | 1 | 321 | 1 | 1 | 371 | 1 | 1 |
222 | 6 | 1 | 272 | 54 | 5 | 322 | 4 | 1 | 372 | 15 | 2 |
223 | 1 | 1 | 273 | 5 | 1 | 323 | 1 | 1 | 373 | 1 | 1 |
224 | 197 | 7 | 274 | 2 | 1 | 324 | 176 | 10 | 374 | 4 | 1 |
225 | 6 | 4 | 275 | 4 | 2 | 325 | 2 | 2 | 375 | 7 | 3 |
226 | 2 | 1 | 276 | 10 | 2 | 326 | 2 | 1 | 376 | 12 | 3 |
227 | 1 | 1 | 277 | 1 | 1 | 327 | 2 | 1 | 377 | 1 | 1 |
228 | 15 | 2 | 278 | 2 | 1 | 328 | 15 | 3 | 378 | 60 | 3 |
229 | 1 | 1 | 279 | 4 | 2 | 329 | 1 | 1 | 379 | 1 | 1 |
230 | 4 | 1 | 280 | 40 | 3 | 330 | 12 | 1 | 380 | 11 | 2 |
231 | 2 | 1 | 281 | 1 | 1 | 331 | 1 | 1 | 381 | 2 | 1 |
232 | 14 | 3 | 282 | 4 | 1 | 332 | 4 | 2 | 382 | 2 | 1 |
233 | 1 | 1 | 283 | 1 | 1 | 333 | 5 | 2 | 383 | 1 | 1 |
234 | 16 | 2 | 284 | 4 | 2 | 334 | 2 | 1 | 384 | 20169 | 15 |
235 | 1 | 1 | 285 | 2 | 1 | 335 | 1 | 1 | 385 | 2 | 1 |
236 | 4 | 2 | 286 | 4 | 1 | 336 | 228 | 5 | 386 | 2 | 1 |
237 | 2 | 1 | 287 | 1 | 1 | 337 | 1 | 1 | 387 | 4 | 2 |
238 | 4 | 1 | 288 | 1045 | 14 | 338 | 5 | 2 | 388 | 5 | 2 |
239 | 1 | 1 | 289 | 2 | 2 | 339 | 1 | 1 | 389 | 1 | 1 |
240 | 208 | 5 | 290 | 4 | 1 | 340 | 15 | 2 | 390 | 12 | 1 |
241 | 1 | 1 | 291 | 2 | 1 | 341 | 1 | 1 | 391 | 1 | 1 |
242 | 5 | 2 | 292 | 5 | 2 | 342 | 18 | 2 | 392 | 44 | 6 |
243 | 67 | 7 | 293 | 1 | 1 | 343 | 5 | 3 | 393 | 1 | 1 |
244 | 5 | 2 | 294 | 23 | 2 | 344 | 12 | 3 | 394 | 2 | 1 |
245 | 2 | 2 | 295 | 1 | 1 | 345 | 1 | 1 | 395 | 1 | 1 |
246 | 4 | 1 | 296 | 14 | 3 | 346 | 2 | 1 | 396 | 30 | 4 |
247 | 1 | 1 | 297 | 5 | 3 | 347 | 1 | 1 | 397 | 1 | 1 |
248 | 12 | 3 | 298 | 2 | 1 | 348 | 12 | 2 | 398 | 2 | 1 |
249 | 1 | 1 | 299 | 1 | 1 | 349 | 1 | 1 | 399 | 5 | 1 |
250 | 15 | 3 | 300 | 49 | 4 | 350 | 10 | 2 | 400 | 221 | 10 |