A finite group is a group having finite group order. Examples of finite groups are the modulo multiplication groups, point groups, cyclic groups, dihedral groups, symmetric groups, alternating groups, and so on.
Properties of finite groups are implemented in the Wolfram Language as FiniteGroupData[group, prop].
The classification theorem of finite groups states that the finite simple groups can be classified completely into one of five types.
A convenient way to visualize groups is using so-called cycle graphs, which show the cycle structure of a given abstract group. For example, cycle graphs of the 5 nonisomorphic groups of order 8 are illustrated above (Shanks 1993, p. 85).
Frucht's theorem states that every finite group is the graph automorphism group of a finite undirected graph.
The finite (cyclic) group forms the subject for the humorous a capella song "Finite Simple Group (of Order 2)" by the Northwestern University mathematics department a capella group "The Klein Four."
The following table gives the numbers and names of the distinct groups of group order for small . In the table, denotes an cyclic group of group order , a group direct product, a dihedral group, the quaternion group, an alternating group, the non-Abelian finite group of order 12 that is not and not (and is not the purely rotational subgroup of the point group ), the quasihedral (or semihedral) group of order 16 with group presentation , the modular group of order 16 with group presentation , the group of order 16 with group presentation , the group of order 16 with group presentation , the group with group presentation , the generalized quaternion group of order 16 with group presentation , a symmetric group, the semidirect product of with with group presentation , the Frobenius group of order , the semidirect product of by with group presentation , the group with group presentation , the group with group presentation , and the semidirect product of by with group presentation
# | Abelian | # | non-Abelian | total | |
1 | 1 | 0 | - | 1 | |
2 | 1 | 0 | - | 1 | |
3 | 1 | 0 | - | 1 | |
4 | 2 | , | 0 | - | 2 |
5 | 1 | 0 | - | 1 | |
6 | 1 | 1 | 2 | ||
7 | 1 | 0 | - | 1 | |
8 | 3 | , , | 2 | , | 5 |
9 | 2 | , | 0 | - | 2 |
10 | 1 | 1 | 2 | ||
11 | 1 | 0 | - | 1 | |
12 | 2 | , | 3 | , , | 5 |
13 | 1 | 0 | - | 1 | |
14 | 1 | 1 | 2 | ||
15 | 1 | 0 | - | 1 | |
16 | 5 | , , , , | 9 | , , , , , , , , | 14 |
17 | 1 | 0 | - | 1 | |
18 | 2 | , | 3 | , , | 5 |
19 | 1 | 0 | - | 1 | |
20 | 2 | , | 3 | , , | 5 |
21 | 1 | 1 | 2 | ||
22 | 1 | 1 | 2 | ||
23 | 1 | 0 | - | 1 | |
24 | 3 | , , | 12 | , , , , , , , plus 5 others | 15 |
25 | 2 | , | 0 | - | 2 |
26 | 1 | 1 | 2 | ||
27 | 3 | , , | 2 | , | 5 |
28 | 2 | , | 2 | , | 4 |
29 | 1 | 0 | - | 1 | |
30 | 4 | 3 | , , | 4 | |
31 | 1 | 0 | - | 1 |
The following table lists some properties of small finite groups. Here is again the group order, PG indicates that a group can be generated by a single permutation, MMG indicates that a group is a modulo multiplication group, is the number of conjugacy classes, is the number of subgroups, and is the number of normal subgroups. Note that the smallest groups that are neither permutation nor modulo multiplication groups are , , and .
group | Abelian | PG | MMG | lengths | lengths | counts of s.t. | ||||
1 | yes | yes | yes | 1 | 1 | 1 | 1 | 1 | 1 | |
2 | yes | yes | no | 2 | 2 | 1, 2 | 2 | 1, 2 | ||
3 | yes | yes | yes | 3 | 2 | 1, 3 | 2 | 1, 1, 3 | ||
4 | yes | yes | yes | 4 | 3 | 1, 2, 4 | 3 | 1, 2, 1, 4 | ||
yes | no | yes | 4 | 5 | 1, , 4 | 5 | 1, 4, 1, 4 | |||
5 | yes | yes | no | 5 | 2 | 1, 4 | 2 | 1, 1, 1, 1, 5 | ||
6 | yes | yes | yes | 6 | 4 | 1, 2, 3, 6 | 4 | 1, 2, 3, 2, 1, 6 | ||
no | yes | no | 3 | 1, 2, 3 | 6 | 1, , 3, 6 | 3 | 1, 4, 3, 4, 1, 6 | ||
7 | yes | yes | no | 7 | 2 | 1, 7 | 2 | 1, 1, 1, 1, 1, 1, 7 | ||
8 | yes | yes | yes | 8 | 4 | 1, 2, 4, 8 | 4 | 1, 2, 1, 4, 1, 2, 1, 8 | ||
yes | no | yes | 8 | 8 | 1, , , 8 | 4 | 1, 4, 1, 8, 1, 4, 1, 8 | |||
yes | no | yes | 8 | 16 | 1, , , 8 | 4 | 1, 8, 1, 8, 1, 8, 1, 8 | |||
no | yes | no | 5 | , | 10 | 1, , , 8 | 6 | 1, 6, 1, 8, 1, 6, 1, 8 | ||
no | no | no | 5 | , | 6 | 1, 2, , 8 | 6 | 1, 2, 1, 8, 1, 2, 1, 8 | ||
9 | yes | yes | no | 9 | 3 | 1, 3, 9 | 3 | 1, 1, 3, 1, 1, 3, 1, 1, 9 | ||
yes | no | no | ||||||||
10 | yes | yes | yes | 10 | 4 | 1, 2, 5, 10 | 4 | 1, 2, 1, 2, 5, 2, 1, 2, 1, 10 | ||
no | yes | no | 4 | 1, , 5 | 8 | 1, , 5, 10 | 3 | 1, 6, 1, 6, 5, 6, 1, 6, 1, 10 | ||
11 | yes | yes | no | 11 | 2 | 1, 11 | 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11 | ||
12 | yes | yes | yes | 12 | 6 | 1, 2, 3, 4, 6, 12 | 6 | 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12 | ||
yes | no | yes | 12 | 10 | 1, , 3, 4, , 12 | 10 | 1, 4, 3, 4, 1, 12, 1, 4, 3, 4, 1, 12 | |||
no | yes | no | 4 | 1, 3, | 10 | 1, , , 4, 12 | 3 | 1, 4, 9, 4, 1, 12, 1, 4, 9, 4, 1, 12 | ||
no | yes | no | 6 | , , | 16 | 1, , 3, , , 12 | 8 | 1, 8, 3, 8, 1, 12, 1, 8, 3, 8, 1, 12 | ||
no | no | no | 6 | , , | 8 | 1, 2, 3, , 6, 12 | 3 | 1, 2, 3, 8, 1, 6, 1, 8, 3, 2, 1, 12 | ||
13 | yes | yes | yes | 13 | 2 | 1, 13 | 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13 | ||
14 | yes | yes | no | 14 | 4 | 1, 2, 7, 14 | 4 | 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14 | ||
no | yes | no | 5 | 1, , 7 | 10 | 1, , 7, 14 | 3 | 1, 8, 1, 8, 1, 8, 7, 8, 1, 8, 1, 8, 1, 14 | ||
15 | yes | yes | no | 15 | 4 | 1, 3, 5, 15 | 4 | 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 15 |
The problem of determining the nonisomorphic finite groups of order was first considered by Cayley (1854). There is no known formula to give the number of possible finite groups as a function of the group order . However, there are simple formulas for special forms of .
(1)
| |||
(2)
| |||
(3)
| |||
(4)
| |||
(5)
|
where and are distinct primes. In addition, there is a beautiful algorithm due to Hölder (Hölder 1895, Alonso 1976) for determining for squarefree , namely
(6)
|
where is the number of primes such that and (Dennis).
Miller (1930) gave the number of groups for orders 1-100, including an erroneous 297 as the number of groups of group order 64. Senior and Lunn (1934, 1935) subsequently completed the list up to 215, but omitted 128 and 192. The number of groups of group order 64 was corrected in Hall and Senior (1964). James et al. (1990) found 2328 groups in 115 isoclinism families of group order 128, correcting previous work, and O'Brien (1991) found the number of groups of group order 256. Currently, the number of groups is known for orders up to 2047, with the difficult cases of orders 512 (; Eick and O'Brien 1999b), 768 (Besche and Eick 2001ab), and 1024 now put to rest (Conway et al. 2008). The numbers of nonisomorphic finite groups of each group order for the first few hundred orders are given in the table below (OEIS A000001--the very first sequence). The number of nonisomorphic groups of orders for , 1, ... are 1, 1, 2, 5, 14, 51, 267, 2328, 56092, ... (OEIS A000679).
The smallest orders for which there exist , 2, ... nonisomorphic groups are 1, 4, 75, 28, 8, 42, ... (OEIS A046057). The incrementally largest number of nonisomorphic finite groups are 1, 2, 5, 14, 15, 51, 52, 267, 2328, ... (OEIS A046058), which occur for orders 1, 4, 8, 16, 24, 32, 48, 64, 128, ... (OEIS A046059). Dennis has conjectured that the number of groups of order assumes every positive integer as a value an infinite number of times.
It is simple to determine the number of Abelian groups using the Kronecker decomposition theorem, and there is at least one Abelian group for every finite order . The number of Abelian groups of group order , 2, ... are given by 1, 1, 1, 2, 1, 1, 1, 3, ... (OEIS A000688). The following table summarizes the total number of finite groups and the number of Abelian finite groups for orders from 1 to 400. A table of orders up to 1000 is given by Royle; the GAP software package includes a table of the number of finite groups up to order 2000, excluding 1024. The number of finite groups of a given order is implemented in the Wolfram Language as FiniteGroupCount[n].
1 | 1 | 1 | 51 | 1 | 1 | 101 | 1 | 1 | 151 | 1 | 1 |
2 | 1 | 1 | 52 | 5 | 2 | 102 | 4 | 1 | 152 | 12 | 3 |
3 | 1 | 1 | 53 | 1 | 1 | 103 | 1 | 1 | 153 | 2 | 2 |
4 | 2 | 2 | 54 | 15 | 3 | 104 | 14 | 3 | 154 | 4 | 1 |
5 | 1 | 1 | 55 | 2 | 1 | 105 | 2 | 1 | 155 | 2 | 1 |
6 | 2 | 1 | 56 | 13 | 3 | 106 | 2 | 1 | 156 | 18 | 2 |
7 | 1 | 1 | 57 | 2 | 1 | 107 | 1 | 1 | 157 | 1 | 1 |
8 | 5 | 3 | 58 | 2 | 1 | 108 | 45 | 6 | 158 | 2 | 1 |
9 | 2 | 2 | 59 | 1 | 1 | 109 | 1 | 1 | 159 | 1 | 1 |
10 | 2 | 1 | 60 | 13 | 2 | 110 | 6 | 1 | 160 | 238 | 7 |
11 | 1 | 1 | 61 | 1 | 1 | 111 | 2 | 1 | 161 | 1 | 1 |
12 | 5 | 2 | 62 | 2 | 1 | 112 | 43 | 5 | 162 | 55 | 5 |
13 | 1 | 1 | 63 | 4 | 2 | 113 | 1 | 1 | 163 | 1 | 1 |
14 | 2 | 1 | 64 | 267 | 11 | 114 | 6 | 1 | 164 | 5 | 2 |
15 | 1 | 1 | 65 | 1 | 1 | 115 | 1 | 1 | 165 | 2 | 1 |
16 | 14 | 5 | 66 | 4 | 1 | 116 | 5 | 2 | 166 | 2 | 1 |
17 | 1 | 1 | 67 | 1 | 1 | 117 | 4 | 2 | 167 | 1 | 1 |
18 | 5 | 2 | 68 | 5 | 2 | 118 | 2 | 1 | 168 | 57 | 3 |
19 | 1 | 1 | 69 | 1 | 1 | 119 | 1 | 1 | 169 | 2 | 2 |
20 | 5 | 2 | 70 | 4 | 1 | 120 | 47 | 3 | 170 | 4 | 1 |
21 | 2 | 1 | 71 | 1 | 1 | 121 | 2 | 2 | 171 | 5 | 2 |
22 | 2 | 1 | 72 | 50 | 6 | 122 | 2 | 1 | 172 | 4 | 2 |
23 | 1 | 1 | 73 | 1 | 1 | 123 | 1 | 1 | 173 | 1 | 1 |
24 | 15 | 3 | 74 | 2 | 1 | 124 | 4 | 2 | 174 | 4 | 1 |
25 | 2 | 2 | 75 | 3 | 2 | 125 | 5 | 3 | 175 | 2 | 2 |
26 | 2 | 1 | 76 | 4 | 2 | 126 | 16 | 2 | 176 | 42 | 5 |
27 | 5 | 3 | 77 | 1 | 1 | 127 | 1 | 1 | 177 | 1 | 1 |
28 | 4 | 2 | 78 | 6 | 1 | 128 | 2328 | 15 | 178 | 2 | 1 |
29 | 1 | 1 | 79 | 1 | 1 | 129 | 2 | 1 | 179 | 1 | 1 |
30 | 4 | 1 | 80 | 52 | 5 | 130 | 4 | 1 | 180 | 37 | 4 |
31 | 1 | 1 | 81 | 15 | 5 | 131 | 1 | 1 | 181 | 1 | 1 |
32 | 51 | 7 | 82 | 2 | 1 | 132 | 10 | 2 | 182 | 4 | 1 |
33 | 1 | 1 | 83 | 1 | 1 | 133 | 1 | 1 | 183 | 2 | 1 |
34 | 2 | 1 | 84 | 15 | 2 | 134 | 2 | 1 | 184 | 12 | 3 |
35 | 1 | 1 | 85 | 1 | 1 | 135 | 5 | 3 | 185 | 1 | 1 |
36 | 14 | 4 | 86 | 2 | 1 | 136 | 15 | 3 | 186 | 6 | 1 |
37 | 1 | 1 | 87 | 1 | 1 | 137 | 1 | 1 | 187 | 1 | 1 |
38 | 2 | 1 | 88 | 12 | 3 | 138 | 4 | 1 | 188 | 4 | 2 |
39 | 2 | 1 | 89 | 1 | 1 | 139 | 1 | 1 | 189 | 13 | 3 |
40 | 14 | 3 | 90 | 10 | 2 | 140 | 11 | 2 | 190 | 4 | 1 |
41 | 1 | 1 | 91 | 1 | 1 | 141 | 1 | 1 | 191 | 1 | 1 |
42 | 6 | 1 | 92 | 4 | 2 | 142 | 2 | 1 | 192 | 1543 | 11 |
43 | 1 | 1 | 93 | 2 | 1 | 143 | 1 | 1 | 193 | 1 | 1 |
44 | 4 | 2 | 94 | 2 | 1 | 144 | 197 | 10 | 194 | 2 | 1 |
45 | 2 | 2 | 95 | 1 | 1 | 145 | 1 | 1 | 195 | 2 | 1 |
46 | 2 | 1 | 96 | 231 | 7 | 146 | 2 | 1 | 196 | 17 | 4 |
47 | 1 | 1 | 97 | 1 | 1 | 147 | 6 | 2 | 197 | 1 | 1 |
48 | 52 | 5 | 98 | 5 | 2 | 148 | 5 | 2 | 198 | 10 | 2 |
49 | 2 | 2 | 99 | 2 | 2 | 149 | 1 | 1 | 199 | 1 | 1 |
50 | 5 | 2 | 100 | 16 | 4 | 150 | 13 | 2 | 200 | 52 | 6 |
201 | 2 | 1 | 251 | 1 | 1 | 301 | 2 | 1 | 351 | 14 | 3 |
202 | 2 | 1 | 252 | 46 | 4 | 302 | 2 | 1 | 352 | 195 | 7 |
203 | 2 | 1 | 253 | 2 | 1 | 303 | 1 | 1 | 353 | 1 | 1 |
204 | 12 | 2 | 254 | 2 | 1 | 304 | 42 | 5 | 354 | 4 | 1 |
205 | 2 | 1 | 255 | 1 | 1 | 305 | 2 | 1 | 355 | 2 | 1 |
206 | 2 | 1 | 256 | 56092 | 22 | 306 | 10 | 2 | 356 | 5 | 2 |
207 | 2 | 2 | 257 | 1 | 1 | 307 | 1 | 1 | 357 | 2 | 1 |
208 | 51 | 5 | 258 | 6 | 1 | 308 | 9 | 2 | 358 | 2 | 1 |
209 | 1 | 1 | 259 | 1 | 1 | 309 | 2 | 1 | 359 | 1 | 1 |
210 | 12 | 1 | 260 | 15 | 2 | 310 | 6 | 1 | 360 | 162 | 6 |
211 | 1 | 1 | 261 | 2 | 2 | 311 | 1 | 1 | 361 | 2 | 2 |
212 | 5 | 2 | 262 | 2 | 1 | 312 | 61 | 3 | 362 | 2 | 1 |
213 | 1 | 1 | 263 | 1 | 1 | 313 | 1 | 1 | 363 | 3 | 2 |
214 | 2 | 1 | 264 | 39 | 3 | 314 | 2 | 1 | 364 | 11 | 2 |
215 | 1 | 1 | 265 | 1 | 1 | 315 | 4 | 2 | 365 | 1 | 1 |
216 | 177 | 9 | 266 | 4 | 1 | 316 | 4 | 2 | 366 | 6 | 1 |
217 | 1 | 1 | 267 | 1 | 1 | 317 | 1 | 1 | 367 | 1 | 1 |
218 | 2 | 1 | 268 | 4 | 2 | 318 | 4 | 1 | 368 | 42 | 5 |
219 | 2 | 1 | 269 | 1 | 1 | 319 | 1 | 1 | 369 | 2 | 2 |
220 | 15 | 2 | 270 | 30 | 3 | 320 | 1640 | 11 | 370 | 4 | 1 |
221 | 1 | 1 | 271 | 1 | 1 | 321 | 1 | 1 | 371 | 1 | 1 |
222 | 6 | 1 | 272 | 54 | 5 | 322 | 4 | 1 | 372 | 15 | 2 |
223 | 1 | 1 | 273 | 5 | 1 | 323 | 1 | 1 | 373 | 1 | 1 |
224 | 197 | 7 | 274 | 2 | 1 | 324 | 176 | 10 | 374 | 4 | 1 |
225 | 6 | 4 | 275 | 4 | 2 | 325 | 2 | 2 | 375 | 7 | 3 |
226 | 2 | 1 | 276 | 10 | 2 | 326 | 2 | 1 | 376 | 12 | 3 |
227 | 1 | 1 | 277 | 1 | 1 | 327 | 2 | 1 | 377 | 1 | 1 |
228 | 15 | 2 | 278 | 2 | 1 | 328 | 15 | 3 | 378 | 60 | 3 |
229 | 1 | 1 | 279 | 4 | 2 | 329 | 1 | 1 | 379 | 1 | 1 |
230 | 4 | 1 | 280 | 40 | 3 | 330 | 12 | 1 | 380 | 11 | 2 |
231 | 2 | 1 | 281 | 1 | 1 | 331 | 1 | 1 | 381 | 2 | 1 |
232 | 14 | 3 | 282 | 4 | 1 | 332 | 4 | 2 | 382 | 2 | 1 |
233 | 1 | 1 | 283 | 1 | 1 | 333 | 5 | 2 | 383 | 1 | 1 |
234 | 16 | 2 | 284 | 4 | 2 | 334 | 2 | 1 | 384 | 20169 | 15 |
235 | 1 | 1 | 285 | 2 | 1 | 335 | 1 | 1 | 385 | 2 | 1 |
236 | 4 | 2 | 286 | 4 | 1 | 336 | 228 | 5 | 386 | 2 | 1 |
237 | 2 | 1 | 287 | 1 | 1 | 337 | 1 | 1 | 387 | 4 | 2 |
238 | 4 | 1 | 288 | 1045 | 14 | 338 | 5 | 2 | 388 | 5 | 2 |
239 | 1 | 1 | 289 | 2 | 2 | 339 | 1 | 1 | 389 | 1 | 1 |
240 | 208 | 5 | 290 | 4 | 1 | 340 | 15 | 2 | 390 | 12 | 1 |
241 | 1 | 1 | 291 | 2 | 1 | 341 | 1 | 1 | 391 | 1 | 1 |
242 | 5 | 2 | 292 | 5 | 2 | 342 | 18 | 2 | 392 | 44 | 6 |
243 | 67 | 7 | 293 | 1 | 1 | 343 | 5 | 3 | 393 | 1 | 1 |
244 | 5 | 2 | 294 | 23 | 2 | 344 | 12 | 3 | 394 | 2 | 1 |
245 | 2 | 2 | 295 | 1 | 1 | 345 | 1 | 1 | 395 | 1 | 1 |
246 | 4 | 1 | 296 | 14 | 3 | 346 | 2 | 1 | 396 | 30 | 4 |
247 | 1 | 1 | 297 | 5 | 3 | 347 | 1 | 1 | 397 | 1 | 1 |
248 | 12 | 3 | 298 | 2 | 1 | 348 | 12 | 2 | 398 | 2 | 1 |
249 | 1 | 1 | 299 | 1 | 1 | 349 | 1 | 1 | 399 | 5 | 1 |
250 | 15 | 3 | 300 | 49 | 4 | 350 | 10 | 2 | 400 | 221 | 10 |