TOPICS
Search

Twisted Chevalley Groups


A finite simple group of Lie-type. The following table summarizes the types of twisted Chevalley groups and their respective orders. In the table, q denotes a prime power and the superscript denotes the order of the twisting automorphism.

grouporder
^3D_4(q)q^(12)(q^2-1)(q^8+q^4+1)(q^6-1)
^2F_4(2^(2n+1)) (n>0)(2^(2n+1))^(12)(2^(2n+1)-1)((2^(2n+1))^3+1)((2^(2n+1))^4-1)((2^(2n+1))^6+1)
^2F_4(2)^'2^(11)·3^4·5·11
^2G_2(3^(2n+1)) (n>0)(3^(2n+1))^3(3^(2n+1)-1)((3^(2n+1))^3+1)
^2G_2(3)2^3·3^2·7
^2B_2(2^(2n+1)) (n>0)(2^(2n+1))^2(2^(2n+1)-1)((2^(2n+1))^2+1)

See also

Chevalley Groups, Finite Group, Simple Group, Tits Group

This entry contributed by Margherita Barile

Explore with Wolfram|Alpha

References

Gorenstein, D. "Known Simple Groups." Ch. 17 in Finite Groups, 2nd ed. New York: Chelsea, pp. 490-494, 1980.Gorenstein, D.; Lyons, R.; and Solomon, R. The Classification of the Finite Simple Groups. Providence, RI: American Mathematical Society, 1994. http://www.ams.org/online_bks/surv40-1/surv40-1-frnt.pdf.Wilson, R. A. "ATLAS of Finite Group Representation." http://brauer.maths.qmul.ac.uk/Atlas/v3/exc/.

Referenced on Wolfram|Alpha

Twisted Chevalley Groups

Cite this as:

Barile, Margherita. "Twisted Chevalley Groups." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/TwistedChevalleyGroups.html

Subject classifications