TOPICS
Search

d-Analog


The d-analog of a complex number s is defined as

 [s]_d=1-(2^d)/(s^d)
(1)

(Flajolet et al. 1995). For integer n, [2]!=1 and

[n]_d!=[3][4]...[n]
(2)
=(1-(2^d)/(3^d))(1-(2^d)/(4^d))...(1-(2^d)/(n^d)).
(3)

It can then be extended to complex values via

 [s]_d!=product_(j=1)^infty([j+2])/([j+s])
(4)

(Flajolet et al. 1995). It satisfies the basic functional identity

 [s]_d!=[s]_d[s-1]_d!.
(5)

The d-analog of the polygamma function is

[psi]_d(s+1)=d/(ds)ln[s]_d!
(6)
=-d·2^dsum_(m=1)^(infty)1/((m+s)[(m+s)^d-2^d]).
(7)

The first few values are

[psi]_1(s)=(3-2s)/(s^2-3s+2)
(8)
[psi]_2(s)=psi_0(s-2)-2psi_0(s)+psi_0(s+2),
(9)

where psi_0(x) is the digamma function.

The d-analog of the Euler-Mascheroni constant gamma is

[gamma]_d=-[psi]_d(3)
(10)
=d·2^dsum_(m=3)^(infty)1/(m(m^d-2^d))
(11)

(Flajolet et al. 1995). The first few values are

[gamma]_1=3/2
(12)
[gamma]_2=(11)/(12)
(13)
[gamma]_3=9/2-H_(3-isqrt(3))-H_(3+isqrt(3))
(14)
[gamma]_4=(47)/(12)-H_(2-2i)-H_(2+2i),
(15)

where H_n is a harmonic number.

The d-analog of the harmonic numbers is [H_2]_d=0 and

[H_n]_d=d·2^d(1/(3^(d+1)[3])+1/(4^(d+1)[4])+...+1/(n^(d+1)[n]))
(16)
=[psi]_d(n+1)+[gamma]_d
(17)

(Flajolet et al. 1995).

The d-analog of infinity factorial is given by

 [infty]_d!=product_(n=3)^infty(1-(2^d)/(n^d)).
(18)

This infinite product can be evaluated in closed form in terms of pi, the hyperbolic sine sinhx, and gamma functions Gamma(x) involving roots of unity zeta_n^k=(-1)^(k/n),

d_1=0
(19)
d_2=1/6
(20)
d_3=(sinh(pisqrt(3)))/(42pisqrt(3))
(21)
d_4=(coshpisinhpi)/(60pi)
(22)
d_5=1/(1240|Gamma(2zeta_5^1)Gamma(-2zeta_5^2)|^2)
(23)
d_6=(sinh^2(pisqrt(3)))/(1512pi^2)
(24)
d_7=1/(28448|Gamma(2zeta_7^1)Gamma(-2zeta_7^2)Gamma(2zeta_7^3)|^2)
(25)
d_8=(sinh(2pi)|sinh(2zeta_4^1)|^2)/(16320pi^3)
(26)
d_9=(sinh(pisqrt(3)))/(588672pisqrt(3)|Gamma(2zeta_9^1)Gamma(-2zeta_9^2)Gamma(-2zeta_9^4)|^2).
(27)

These are all special cases of a general result for infinite products.


See also

Infinite Product, q-Analog

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Flajolet, P.; Labelle, G.; Laforest, L.; and Salvy, B. "Hypergeometrics and the Cost Structure of Quadtrees." Random Structure Alg. 7, 117-144, 1995. http://algo.inria.fr/flajolet/Publications/publist.html.

Referenced on Wolfram|Alpha

d-Analog

Cite this as:

Weisstein, Eric W. "d-Analog." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/d-Analog.html

Subject classifications