The transformation
of a sequence
into a sequence
by the formula
|
(1)
|
where
is a Stirling number of the second
kind. The inverse transform is given by
|
(2)
|
where
is a Stirling number of the first kind
(Sloane and Plouffe 1995, p. 23).
The following table summarized Stirling transforms for some common sequences, where
denotes the Iverson bracket and denotes the primes.
| OEIS | |
1 | A000110 | 1,
1, 2, 5, 15, 52, 203, ... |
| A005493 | 0, 1, 3, 10, 37, 151, 674, ... |
| A000110 | 1, 2, 5, 15, 52, 203, 877, ... |
| A085507 | 0, 0, 1, 4, 13, 41, 136, 505, ... |
| A024430 | 1, 0, 1, 3, 8, 25, 97, 434, 2095, ... |
| A024429 | 0, 1, 1, 2, 7, 27, 106, 443, ... |
| A033999 | 1, ,
1, ,
1, ,
... |
Here,
gives the Bell numbers.
has the exponential generating function
|
(3)
|
See also
Binomial Transform,
Euler Transform,
Exponential Transform,
Möbius Transform,
Stirling
Number of the First Kind,
Stirling
Number of the Second Kind
Explore with Wolfram|Alpha
References
Bernstein, M. and Sloane, N. J. A. "Some Canonical Sequences of Integers." Linear Algebra Appl. 226-228,
57-72, 1995.Graham, R. L.; Knuth, D. E.; and Patashnik, O.
"Factorial Factors." §4.4 in Concrete
Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley,
p. 252, 1994.Riordan, J. Combinatorial
Identities. New York: Wiley, p. 90, 1979.Riordan, J. An
Introduction to Combinatorial Analysis. New York: Wiley, p. 48, 1980.Sloane,
N. J. A. Sequences A000110/M1483,
A005493/M2851, A024429,
A024430, A033999,
A052437, and A085507
in "The On-Line Encyclopedia of Integer Sequences."Sloane,
N. J. A. and Plouffe, S. The
Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.Referenced
on Wolfram|Alpha
Stirling Transform
Cite this as:
Weisstein, Eric W. "Stirling Transform."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StirlingTransform.html
Subject classifications