TOPICS
Search

Binomial Transform


The binomial transform takes the sequence a_0, a_1, a_2, ... to the sequence b_0, b_1, b_2, ... via the transformation

 b_n=sum_(k=0)^n(-1)^(n-k)(n; k)a_k.

The inverse transform is

 a_n=sum_(k=0)^n(n; k)b_k

(Sloane and Plouffe 1995, pp. 13 and 22). The inverse binomial transform of b_n=1 for prime n and b_n=0 for composite n is 0, 1, 3, 6, 11, 20, 37, 70, ... (OEIS A052467). The inverse binomial transform of b_n=1 for even n and b_n=0 for odd n is 0, 1, 2, 4, 8, 16, 32, 64, ... (OEIS A000079). Similarly, the inverse binomial transform of b_n=1 for odd n and b_n=0 for even n is 1, 2, 4, 8, 16, 32, 64, ... (OEIS A000079). The inverse binomial transform of the Bell numbers 1, 1, 2, 5, 15, 52, 203, ... (OEIS A000110) is a shifted version of the same numbers: 1, 2, 5, 15, 52, 203, ... (Bernstein and Sloane 1995, Sloane and Plouffe 1995, p. 22).

The central and raw moments of statistical distributions are also related by the binomial transform.


See also

Binomial, Central Moment, Euler Transform, Exponential Transform, Möbius Transform, Raw Moment

Explore with Wolfram|Alpha

References

Bernstein, M. and Sloane, N. J. A. "Some Canonical Sequences of Integers." Linear Algebra Appl. 226/228, 57-72, 1995.Sloane, N. J. A. Sequences A000079/M1129, A000110/M1484, and A052467 in "The On-Line Encyclopedia of Integer Sequences."Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.

Referenced on Wolfram|Alpha

Binomial Transform

Cite this as:

Weisstein, Eric W. "Binomial Transform." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BinomialTransform.html

Subject classifications