TOPICS
Search

Spiral


Spirals

A spiral is a curve that gets farther away from a central point as the angle is increased, thus "wrapping around" itself. The simplest example is Archimedes' spiral, whose radial distance increases linearly with angle. A number of named cases are illustrated above and summarized in the following table.


See also

Archimedes' Spiral, Circle Involute, Conical Spiral, Cornu Spiral, Cotes' Spiral, Daisy, Epispiral, Fermat's Spiral, Helix, Hyperbolic Spiral, Logarithmic Spiral, Mice Problem, Nielsen's Spiral, Phyllotaxis, Poinsot's Spirals, Polygonal Spiral, Rational Spiral, Spherical Spiral, Theodorus Spiral

Explore with Wolfram|Alpha

References

Davis, P. J. Spirals from Theodorus to Chaos. Wellesley, MA: A K Peters, 1993.Eppstein, D. "Spirals." http://www.ics.uci.edu/~eppstein/junkyard/spiral.html.Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 54-66, 1991.Lockwood, E. H. "Spirals." Ch. 22 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 172-175, 1967.Weisstein, E. W. "Books about Spirals." http://www.ericweisstein.com/encyclopedias/books/Spirals.html.Yates, R. C. "Spirals." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 206-216, 1952.

Cite this as:

Weisstein, Eric W. "Spiral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Spiral.html

Subject classifications