A spiral is a curve that gets farther away from a central point as the angle is increased, thus "wrapping around" itself. The simplest example is Archimedes' spiral, whose radial distance increases linearly with angle. A number of named cases are illustrated above and summarized in the following table.
Spiral
See also
Archimedes' Spiral, Circle Involute, Conical Spiral, Cornu Spiral, Cotes' Spiral, Daisy, Epispiral, Fermat's Spiral, Helix, Hyperbolic Spiral, Logarithmic Spiral, Mice Problem, Nielsen's Spiral, Phyllotaxis, Poinsot's Spirals, Polygonal Spiral, Rational Spiral, Spherical Spiral, Theodorus SpiralExplore with Wolfram|Alpha
References
Davis, P. J. Spirals from Theodorus to Chaos. Wellesley, MA: A K Peters, 1993.Eppstein, D. "Spirals." http://www.ics.uci.edu/~eppstein/junkyard/spiral.html.Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 54-66, 1991.Lockwood, E. H. "Spirals." Ch. 22 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 172-175, 1967.Weisstein, E. W. "Books about Spirals." http://www.ericweisstein.com/encyclopedias/books/Spirals.html.Yates, R. C. "Spirals." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 206-216, 1952.Cite this as:
Weisstein, Eric W. "Spiral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Spiral.html