Let
be the class of expressions generated by
1. The rational numbers and the two real numbers
and ,
2. The variable ,
3. The operations of addition, multiplication,
and composition, and
4. The sine, exponential,
and absolute value functions.
Then if ,
the predicate "" is recursively
undecidable.
See also
Constant Problem,
Hidden Zero,
Integer Relation,
Integration
Problem,
Recursion,
Recursively
Undecidable,
Rice's Theorem,
Schanuel's
Conjecture,
Undecidable,
Zero
Explore with Wolfram|Alpha
References
Caviness, B. F. "On Canonical Forms and Simplification." J. Assoc. Comp. Mach. 17, 385-396, 1970.Davenport, J. H.
"Equality in Computer Algebra and Beyond." J. Symb. Comput. 34,
259-270, 2002.Petkovšek, M.; Wilf, H. S.; and Zeilberger,
D. A=B.
Wellesley, MA: A K Peters, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.Richardson,
D. "Some Unsolvable Problems Involving Elementary Functions of a Real Variable."
J. Symbolic Logic 33, 514-520, 1968.Richardson, D. "How
to Recognize Zero." J. Symb. Comput. 24, 627-645, 1997.Richardson,
D. "The Uniformity Conjecture." In Computability
and Complexity in Analysis: 4th International Workshop, CCA 2000, Swansea, UK, September
17-19, 2000 (Ed. J. Blanck, V. Brattka, and P. Hertling).
Berlin: Springer-Verlag, pp. 253-272, 2000.Trott, M. The
Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2005. http://www.mathematicaguidebooks.org/.Referenced
on Wolfram|Alpha
Richardson's Theorem
Cite this as:
Weisstein, Eric W. "Richardson's Theorem."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RichardsonsTheorem.html
Subject classifications