TOPICS
Search

Pedal-Cevian Point


If the pedal triangle of a point P in a triangle DeltaABC is a Cevian triangle, then the point P is called the pedal-cevian point of DeltaABC with respect to the pedal triangle.

PedalCevianPoints

The circumcenter O, orthocenter H, and incenter I of a triangle DeltaA_1A_2A_3 are always pedal-Cevian points, with corresponding pedal triangles given by the medial triangle DeltaM_1M_2M_3, orthic triangle DeltaH_1H_2H_3, and contact triangle DeltaT_1T_2T_3, respectively, and pedal points the triangle centroid G, orthocenter H, and Gergonne point Ge, respectively (Honsberger 1995, p. 142). If P is a pedal-Cevian point of a triangle, then so is its isotomic conjugate Q, as is its reflection P^' in the circumcenter (Honsberger 1995, p. 143).


See also

Cevian, Cevian Point, Cevian Triangle, Pedal Point, Pedal Triangle, Triangulation Point

Explore with Wolfram|Alpha

References

Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 142-143, 1995.

Referenced on Wolfram|Alpha

Pedal-Cevian Point

Cite this as:

Weisstein, Eric W. "Pedal-Cevian Point." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Pedal-CevianPoint.html

Subject classifications