TOPICS
Search

Cevian Triangle


CevianTriangle

Given a point P and a triangle DeltaABC, the Cevian triangle DeltaA^'B^'C^' is defined as the triangle composed of the endpoints of the cevians though the Cevian point P. A triangle and its Cevian triangle are therefore perspective with respect to the Cevian point. If the point P has trilinear coordinates alpha:beta:gamma, then the Cevian triangle has trilinear vertex matrix

 [0 beta gamma; alpha 0 gamma; alpha beta 0]
(1)

(Kimberling 1998, pp. 55 and 185), and is a central triangle of type 1 (Kimberling 1998, p. 55).

The following table summarizes a number of special Cevian triangles for various special Cevian points P.

If A^'B^'C^' is the Cevian triangle of X and A^('')B^('')C^('') is the anticevian triangle, then X and A^('') are harmonic conjugates with respect to A and A^'.

The side lengths of the Cevian triangle with respect to a Cevian point alpha:beta:gamma are given by

a^'=(abcsqrt((alpha^2beta^2+beta^2gamma^2+gamma^2alpha^2)+2alphabetagamma(-alphacosA+betacosB+gammacosC)))/((aalpha+bbeta)(aalpha+cgamma))
(2)
b^'=(abcsqrt((alpha^2beta^2+beta^2gamma^2+gamma^2alpha^2)+2alphabetagamma(alphacosA-betacosB+gammacosC)))/((bbeta+cgamma)(bbeta+aalpha))
(3)
c^'=(abcsqrt((alpha^2beta^2+beta^2gamma^2+gamma^2alpha^2)+2alphabetagamma(alphacosA+betacosB-gammacosC)))/((cgamma+aalpha)(cgamma+bbeta)).
(4)

The area of the Cevian triangle of DeltaABC with respect to the center with trilinear coordinates P=alpha:beta:gamma is given by

 Delta^'=(2abc|alphabetagamma|)/(|(aalpha+bbeta)(aalpha+cgamma)(bbeta+cgamma)|)Delta,
(5)

where Delta is the area of triangle DeltaABC.

CevianTriangleTheorems

If DeltaA^'B^'C^' is the Cevian triangle of DeltaABC, then the triangle DeltaA^('')B^('')C^('') obtained by reflecting A^', B^', and C^' across the midpoints of their sides is also a Cevian triangle of DeltaABC (Honsberger 1995, p. 141; left figure). Furthermore, if the Cevian circle crosses the sides of DeltaABC in three points A^(''), B^(''), and C^(''), then DeltaA^('')B^('')C^('') is also a Cevian triangle of DeltaABC (Honsberger 1995, pp. 141-142; right figure).


See also

Anticevian Triangle, Cevian, Cevian Circle, Cevian Point

Explore with Wolfram|Alpha

References

Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 141-143, 1995.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.

Referenced on Wolfram|Alpha

Cevian Triangle

Cite this as:

Weisstein, Eric W. "Cevian Triangle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CevianTriangle.html

Subject classifications