TOPICS
Search

Harmonic Conjugate


HarmonicRatio

Given collinear points W, X, Y, and Z, Y and Z are harmonic conjugates with respect to W and X if

 (|WY|)/(|YX|)=(|WZ|)/(|XZ|).
(1)

W and X are also harmonic conjugates with respect to Y and Z.

The distances between such points are said to be in a harmonic range, and the line segment depicted above is called a harmonic segment. In other words, harmonic points divide a line segment internally and externally in the same ratio. If |WZ|=1, then

|WY|=(a(1-a))/(1+a)
(2)
|WX|=(2a)/(a+1).
(3)

Harmonic conjugates are also defined for a triangle. If W and X have trilinear coordinates alpha:beta:gamma and alpha^':beta^':gamma^', then the trilinear coordinates of the harmonic conjugates are

Y=alpha+alpha^':beta+beta^':gamma+gamma^'
(4)
Z=alpha-alpha^':beta-beta^':gamma-gamma^'
(5)

(Kimberling 1994).


See also

Harmonic Range, Inversion Pole, Polar

Explore with Wolfram|Alpha

References

Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, p. 65, 1928.Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." Math. Mag. 67, 163-187, 1994.Lachlan, R. "Harmonic Ranges and Pencils." Ch. 4 in An Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 24-36, 1893.Ogilvy, C. S. Excursions in Geometry. New York: Dover, pp. 13-14, 1990.Phillips, A. W. and Fisher, I. Elements of Geometry. New York: American Book Co., 1896.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. New York: Viking Penguin, p. 92, 1992.

Referenced on Wolfram|Alpha

Harmonic Conjugate

Cite this as:

Weisstein, Eric W. "Harmonic Conjugate." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HarmonicConjugate.html

Subject classifications