TOPICS
Search

Pedal Triangle


PedalTriangle

Given a point P, the pedal triangle of P is the triangle whose polygon vertices are the feet of the perpendiculars from P to the side lines. The pedal triangle of a triangle with trilinear coordinates alpha:beta:gamma and angles A, B, and C has trilinear vertex matrix

 [0 beta+alphacosC gamma+alphacosB; alpha+betacosC 0 gamma+betacosA; alpha+gammacosB beta+gammacosA 0]
(1)

(Kimberling 1998, p. 186), and is a central triangle of type 2 (Kimberling 1998, p. 55).

The side lengths are

a^'=(abcsqrt(beta^2+gamma^2+2betagammacosA))/(2R|aalpha+bbeta+cgamma|)
(2)
b^'=(abcsqrt(alpha^2+gamma^2+2alphagammacosB))/(2R|aalpha+bbeta+cgamma|)
(3)
c^'=(abcsqrt(alpha^2+beta^2+2alphabetacosC))/(2R|aalpha+bbeta+cgamma|),
(4)

where R is the circumradius of DeltaABC, and area is

 Delta^'=(4(calphabeta+balphagamma+abetagamma)Delta^3)/(abc(aalpha+bbeta+cgamma)^2),
(5)

where Delta is the area of DeltaABC.

The following table summarizes a number of special pedal triangles for various special pedal points P.

The symmedian point of a triangle is the triangle centroid of its pedal triangle (Honsberger 1995, pp. 72-74).

The third pedal triangle is similar to the original one. This theorem can be generalized to: the nth pedal n-gon of any n-gon is similar to the original one. It is also true that

 P_BP_C=APsinA
(6)

(Johnson 1929, pp. 135-136; Stewart 1940; Coxeter and Greitzer 1967, p. 25). The area Delta_P of the pedal triangle of a point P is proportional to the power of P with respect to the circumcircle,

A=1/2(R^2-OP^2)sinAsinBsinC
(7)
=(R^2-OP^2)/(4R^2)Delta
(8)

(Johnson 1929, pp. 139-141).

The only closed billiards path of a single circuit in an acute triangle is the pedal triangle. There are an infinite number of multiple-circuit paths, but all segments are parallel to the sides of the pedal triangle (Wells 1991).


See also

Antipedal Triangle, Fagnano's Problem, Orthic Triangle, Pedal Circle, Pedal Line

Explore with Wolfram|Alpha

References

Coxeter, H. S. M. and Greitzer, S. L. "Pedal Triangles." §1.9 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 22-26, 1967.Gallatly, W. "Pedal Triangles." Ch. 5 in The Modern Geometry of the Triangle, 2nd ed. London: Hodgson, pp. 37-45, 1913.Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 67-74, 1995.Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Stewart, B. M. "Cyclic Properties of Miquel Polygons." Amer. Math. Monthly 47, 462-466, 1940.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, 1991.

Referenced on Wolfram|Alpha

Pedal Triangle

Cite this as:

Weisstein, Eric W. "Pedal Triangle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PedalTriangle.html

Subject classifications