TOPICS
Search

Parabola Inverse Curve


The inverse curve for a parabola given by

x=at^2
(1)
y=2at
(2)

with inversion center (x_0,y_0) and inversion radius k is

x=x_0+(k(at^2-x_0))/((at^2+x_0)^2+(2at-y_0)^2)
(3)
y=y_0+(k(2at-y_0))/((at^2+x_0)^2+(2at-y_0)^2).
(4)
ParabolaInverseVertex

For (x_0,y_0)=(0,0) at the parabola vertex, the inverse curve is the cissoid of Diocles

x=k/(a(4+t^2))
(5)
y=(2k)/(at(4+t^2)).
(6)
ParabolaInverseFocus

For (x_0,y_0)=(a,0) at the focus, the inverse curve is the cardioid

x=a+(k(t^2-1))/(a(1+t^2)^2)
(7)
y=(2kt)/(a(1+t^2)^2).
(8)

See also

Inverse Curve, Inversion, Parabola

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Parabola Inverse Curve." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ParabolaInverseCurve.html

Subject classifications