TOPICS
Search

Modular Function


A function is said to be modular (or "elliptic modular") if it satisfies:

1. f is meromorphic in the upper half-plane H,

2. f(Atau)=f(tau) for every matrix A in the modular group Gamma,

3. The Laurent series of f has the form

 f(tau)=sum_(n=-m)^inftya(n)e^(2piintau)

(Apostol 1997, p. 34). Every rational function of Klein's absolute invariant J is a modular function, and every modular function can be expressed as a rational function of J (Apostol 1997, p. 40). Modular functions are special cases of modular forms, but not vice versa.

An important property of modular functions is that if f is modular and not identically 0, then the number of zeros of f is equal to the number of poles of f in the closure of the fundamental region R_Gamma (Apostol 1997, p. 34).


See also

Dirichlet Series, Elliptic Function, Elliptic Lambda Function, Klein's Absolute Invariant, Modular Equation, Modular Form, Modular Group Gamma, Modular Group Gamma0, Modular Group Lambda

Explore with Wolfram|Alpha

References

Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, 1997.Askey, R. "Ramanujan and Hypergeometric and Basic Hypergeometric Series." In Ramanujan International Symposium on Analysis: Proceedings of the Ramanujan Birth Centenary Year International Symposium held in Pune, December 26-28, 1987 (Ed. N. K. Thakare, K. C. Sharma and T. T. Raghunathan). New Delhi: Macmillan of India, pp. 1-83, 1989.Borwein, J. M. and Borwein, P. B. "Elliptic Modular Functions." §4.3 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 112-116, 1987.Rademacher, H. "Zur Theorie der Modulfunktionen." J. reine angew. Math. 167, 312-336, 1932.Rankin, R. A. Modular Forms and Functions. Cambridge, England: Cambridge University Press, 1977.Schoeneberg, B. Elliptic Modular Functions: An Introduction. Berlin: New York: Springer-Verlag, 1974.Weisstein, E. W. "Books about Modular Functions." http://www.ericweisstein.com/encyclopedias/books/ModularFunctions.html.

Referenced on Wolfram|Alpha

Modular Function

Cite this as:

Weisstein, Eric W. "Modular Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ModularFunction.html

Subject classifications