TOPICS
Search

Inverse Secant


ArcSec
ArcSecReImAbs
Min Max
Re
Im Powered by webMathematica

The inverse secant sec^(-1)z (Zwillinger 1995, p. 465), also denoted arcsecz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 315; Jeffrey 2000, p. 124), is the inverse function of the secant. The variants Arcsecz (Beyer 1987, p. 141) and Sec^(-1)z are sometimes used to indicate the principal value, although this distinction is not always made (e.g., Zwillinger 1995, p. 466). Worse yet, the notation arcsecz is sometimes used for the principal value, with Arcsecz being used for the multivalued function (Abramowitz and Stegun 1972, p. 80). In the notation sec^(-1)z (commonly used in North America and in pocket calculators worldwide), secz is the secant and the superscript -1 denotes the inverse function, not the multiplicative inverse.

The principal value of the inverse secant is implemented as ArcSec[z] in the Wolfram Language.

InverseSecantBranchCut

The inverse secant is a multivalued function and hence requires a branch cut in the complex plane, which the Wolfram Language's convention places at (-1,1). This follows from the definition of sec^(-1)z as

 sec^(-1)z=1/2pi+iln(sqrt(1-1/(z^2))+i/z).
(1)

The derivative of sec^(-1)z is

 d/(dz)sec^(-1)z=1/(z^2sqrt(1-1/(z^2))),
(2)

which simplifies to

 d/(dx)sec^(-1)x=1/(xsqrt(x^2-1))
(3)

for x>0. The indefinite integral is

 intsec^(-1)zdz=zsec^(-1)z-ln[z(1+sqrt((z^2-1)/(z^2)))]+C,
(4)

which simplifies to

 intsec^(-1)xdx=xsec^(-1)x-ln(x+sqrt(x^2-1))
(5)

for x>0.

The inverse secant has a Taylor series about infinity of

sec^(-1)x=1/2pi-sum_(n=0)^(infty)((2n-1)!!)/((2n+1)(2n)!!)x^(-2n-1)
(6)
=1/2pi-x^(-1)-1/6x^(-3)-3/(40)x^(-5)-5/(112)x^(-7)-...
(7)

(OEIS A055786 and A002595).

The inverse secant satisfies

 sec^(-1)z=cos^(-1)(1/z)
(8)

for z!=0, and

sec^(-1)z=pi-sec^(-1)(-z)
(9)
=1/2pi-csc^(-1)z
(10)
=1/2pi+csc^(-1)(-z)
(11)

for all complex z. It is given in terms of other inverse trigonometric functions by

sec^(-1)x={pi+csc^(-1)(x/(sqrt(x^2-1))) for x<-1; csc^(-1)(x/(sqrt(x^2-1))) for x>1
(12)
={pi-cot^(-1)(1/(sqrt(x^2-1))) for x<-1; cot^(-1)(1/(sqrt(x^2-1))) for x>1
(13)
={pi+sin^(-1)((sqrt(x^2-1))/x) for x<-1; sin^(-1)((sqrt(x^2-1))/x) for x>1
(14)
={pi-tan^(-1)(sqrt(x^2-1)) for x<-1; tan^(-1)(sqrt(x^2-1)) for x>1.
(15)

See also

Inverse Cosecant, Inverse Cosine, Inverse Cotangent, Inverse Sine, Inverse Tangent, Inverse Trigonometric Functions, Secant

Related Wolfram sites

http://functions.wolfram.com/ElementaryFunctions/ArcSec/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A.(Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 141-143, 1987.Bronshtein, I. N. and Semendyayev, K. A. Handbook of Mathematics, 3rd ed. New York: Springer-Verlag, 1997.Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 315, 1998.Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, 2000.Sloane, N. J. A. Sequences A002595/M4233 and A055786 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.Zwillinger, D.(Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.

Referenced on Wolfram|Alpha

Inverse Secant

Cite this as:

Weisstein, Eric W. "Inverse Secant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/InverseSecant.html

Subject classifications