The Harary index of a graph on
vertices was defined by Plavšić et al. (1993) as
(1)
|
where
(2)
|
is the reciprocal of the graph distance matrix (Plavšić et al. 1993;
Devillers and Balaban, p. 80, 2000).
Some care is needed, since while some authors include the leading factor of 1/2 (e.g., Plavšić et al. 1993, Mercader et al. 2001), others omit it (e.g., Devillers and Balaban 1999, pp. 111 and 202).
Unless otherwise stated, hydrogen atoms are usually ignored in the computation of such indices as organic chemists usually do when they write a benzene ring as a hexagon (Devillers and Balaban 1999, p. 25).
The following table summarizes values of the Harary index for various special classes of graphs.
graph class | OEIS | |
Andrásfai graph | A000000/A000000 | 1, 15/2, 20, 77/2, 63, 187/2, 130, 345/2, 221, ... |
antiprism graph | A000000/A000000 | X, X, 27/2, 22, 95/3, 42, 637/12, 194/3, 384/5, ... |
Apollonian network | A000000/A000000 | 6, 18, 80, 470, 3248, 122106/5, 3394391/20, 6406407/20, ... |
bishop graph | A296197 | 0, 2, 13, 42, 102, 208, 379, 636, 1004, 1510, ... |
black bishop graph | A296198 | 0, 1, 8, 21, 55, 104, 197, 318, 514, 755, ... |
cocktail party graph | A000000/A000000 | 0, 5, 27/2, 26, 85, 126, 175, 232, 297, 370, ... |
complete
bipartite graph | A000326 | 2, 5, 12, 44, 70, 102, 140, 184, ... |
complete
graph | A000217 | 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, ... |
complete tripartite graph | A000000/A000000 | 3, 27/2, 63, 114, 180, 261, ... |
A000000/A000000 | 58/3, 39, 368/3, 514/3, 1116/5, 4166/15, 35128/105, ... | |
crown graph | A000000/A000000 | X, X, 10, 58/3, 95/3, 47, 196/3, 260/3, 111, 415/3, ... |
cube-connected cycle graph | A000000/A000000 | X, X, 556/5, 57376/105, 162634/63, 34149904/3003, ... |
cycle
graph | A160046/A160047 | X, X, 3, 5, 15/2, 10, 77/6, 47/3, 75/4, 131/6, ... |
Fibonacci cube graph | A000000/A000000 | 1, 5/2, 22/3, 71/4, 216/5, 1219/12, 25033/105, ... |
folded cube graph | A000000/A000000 | X, 1, 6, 22, 80, 808/3, 2800/3, 9488/3, 11072, ... |
gear graph | A000000/A000000 | X, X, 29/2, 133/6, 125/4, 167/4, 161/3, 67, 327/4, ... |
grid
graph | A296191/A296192 | 0, 5, 133/6, 293/5, 3399/28, 137111/630, 140351/396, ... |
grid graph | A000000/A000000 | 0, 58/3, 2402/15, 30617/45, 7168769/3465, ... |
halved cube graph | A290347/A290348 | 0, 1, 6, 26, 100, 1096/3, 3920/3, 13936/3, 16544, ... |
Hanoi graph | A000000/A000000 | 3, 22, 4276/35, 1835837/3003, 175359949924361/60168147039, ... |
helm graph | A000000/A000000 | 29/2, 133/6, 125/4, 167/4, 161/3, 67, 327/4, ... |
hypercube graph | A290343/A290344 | 1, 5, 58/3, 206/3, 3548/15, 12136/15, 291824/105, ... |
Keller
graph | A296189 | 0, 80, 1552, 27264, 460544, 7634944, ... |
king
graph | A144945 | 0, 6, 28, 76, 160, 290, 476, 728, 1056, 1470, ... |
knight graph | A000000/A000000 | 0, 0, 47/3, 309/5, 150, 1769/6, 7724/15, 24733/30, ... |
Menger sponge graph | A000000/A000000 | 1147/15, 207460203161/19684665, ... |
Möbius ladder | A000000/A000000 | X, X, 12, 20, 85/3, 38, 287/6, 176/3, 348/5, 244/3, ... |
Mycielski graph | A296193/A000000 | 0, 1, 15/2, 75/2, 162, 1317/2, 2610, 20505/2, 40212, ... |
odd graph | A000000 | 0, 3, 30, 280, 2730, 57057/2, 635635/2, ... |
pan graph | A000000/A000000 | X, X, 5, 22/3, 61/6, 155/12, 16, 571/30, 1339/60, ... |
path
graph | A160048/A160049 | 0, 2, 5, 26/3, 77/6, 87/5, 223/10, 962/35, ... |
permutation star graph | A296190/A296057 | 0, 1, 10, 123, 2202, 59040, 2287680, 121394000, ... |
prism
graph | A000000/A000000 | X, X, 12, 58/3, 85/3, 75/2, 287/6, 874/15, ... |
queen graph | A296196 | 0, 6, 32, 98, 230, 460, 826, 1372, 2148, 3210, ... |
rook complement graph | A092364 | 0, 2, 27, 96, 250, 540, 1029, 1792, 2916, 4500, ... |
rook graph | A085740 | X, 5, 54, 168, 400, 810, 1470, 2464, 3888, 5850, ... |
Sierpiński carpet graph | A000000/A000000 | 47/3, 23255059/51480, ... |
Sierpiński gasket graph | A000000/A000000 | 3, 12, 227/4, 5553/20, 161390213/120120, ... |
Sierpiński tetrahedron graph | A000000/A000000 | 6, 69/2, 1055/4, 599803/280, 279423163/16016, ... |
star graph | A160050/A130658 | 0, 1, 5/2, 9/2, 7, 10, 27/2, 35/2, 22, 27, ... |
sun graph | A000000/A000000 | X, X, 10, 97/6, 95/4, 158/5, 2429/60, 743/15, ... |
sunlet graph | A000000/A000000 | X, X, 10, 97/3, 95/2, 316/5, 2429/30, 1486/15, 594/5, ... |
tetrahedral Johnson graph | A000000/A000000 | X, X, 415/3, 2345/6, 2800/3, 1981, 3850, 6985, 11990, ... |
torus
grid graph | A000000/A000000 | X, X, 27, 206/3, 875/6, 1287/5, 12691/30, 66964/105, ... |
transposition graph | A296194 | 0, 1, 12, 162, 3010, 81000, 3105396, 162469104, ... |
triangular graph | A000000/A000000 | X, 0, 3, 27/2, 75/2, 165/2, 315/2, 273, 441, 675, 990, ... |
triangular grid graph | A027480 | 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, ... |
web graph | A000000/A000000 | X, X, 45/2, 217/6, 635/12, 703/10, 1799/20, 110, ... |
wheel
graph | A000000/A000000 | 6, 9, 25/2, 33/2, 21, 26, 63/2, 75/2, 44, 51, 117/2, ... |
white bishop graph | A296200 | 1, 5, 21, 47, 104, 182, 318, 490, 755, ... |
Closed forms for some special classes are summarized in the following table. Here, is a harmonic
number,
is a Catalan number,
is a Lerch transcendent,
is a generalized
hypergeometric function, and
is a Stirling
number of the first kind.