TOPICS
Search

Great Ditrigonal Dodecicosidodecahedron


U42

The great ditrigonal dodecicosidodecahedron is the uniform polyhedron with Maeder index 42 (Maeder 1997), Wenninger index 81 (Wenninger 1989), Coxeter index 54 (Coxeter et al. 1954), and Har'El index 47 (Har'El 1993). It has Wythoff symbol 35|5/3. Its faces are 20{3}+12{5}+12{(10)/3}.

The great ditrigonal dodecicosidodecahedron is implemented in the Wolfram Language as UniformPolyhedron[81], UniformPolyhedron["GreatDitrigonalDodecicosidodecahedron"], UniformPolyhedron[{"Coxeter", 54}], UniformPolyhedron[{"Kaleido", 47}], UniformPolyhedron[{"Uniform", 42}], or UniformPolyhedron[{"Wenninger", 81}]. It is also implemented in the Wolfram Language as PolyhedronData["GreatDitrigonalDodecicosidodecahedron"].

DodecicosahedralGraph

Its skeleton is the dodecicosahedral graph, illustrated above in a few embeddings.

Its convex hull is a truncated dodecahedron and its circumradius for unit edge length is

 R=1/4sqrt(34-6sqrt(5)).
GreatDitrigonalDodecicosidodecahedronHull

The convex hull of the great ditrigonal dodecicosidodecahedron is a truncated dodecahedron, whose dual is the triakis icosahedron, so the dual of the great ditrigonal dodecicosidodecahedron (the great triambic icosahedron) is a stellation of the triakis icosahedron (Wenninger 1983, p. 42).

Its dual is the great ditrigonal dodecacronic hexecontahedron.


See also

Uniform Polyhedron

Explore with Wolfram|Alpha

References

Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. "Uniform Polyhedra." Phil. Trans. Roy. Soc. London Ser. A 246, 401-450, 1954.Har'El, Z. "Uniform Solution for Uniform Polyhedra." Geometriae Dedicata 47, 57-110, 1993.Maeder, R. E. "42: Great Ditrigonal Dodecicosidodecahedron." 1997. https://www.mathconsult.ch/static/unipoly/42.html.Wenninger, M. J. Dual Models. Cambridge, England: Cambridge University Press, 1983.Wenninger, M. J. "Great Ditrigonal Dodecicosidodecahedron." Model 81 in Polyhedron Models. Cambridge, England: Cambridge University Press, p. 125, 1989.

Referenced on Wolfram|Alpha

Great Ditrigonal Dodecicosidodecahedron

Cite this as:

Weisstein, Eric W. "Great Ditrigonal Dodecicosidodecahedron." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GreatDitrigonalDodecicosidodecahedron.html

Subject classifications