TOPICS
Search

Fibonacci Chain Map


The Fibonacci chain map is defined as

x_(n+1)=-1/(x_n+epsilon+alphasgn[frac(n(phi-1))-(phi-1)])
(1)
phi_(n+1)=frac(phi_n+phi-1),
(2)

where frac(x) is the fractional part, sgn(x) is the sign, and phi is the golden ratio.


Explore with Wolfram|Alpha

References

Negi, S. S. and Ramaswamy, R. "A Plethora of Strange Nonchaotic Attractors." 6 May 2001. http://arxiv.org/abs/nlin.CD/0105011.Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, pp. 224-225, 2004. http://www.mathematicaguidebooks.org/.

Referenced on Wolfram|Alpha

Fibonacci Chain Map

Cite this as:

Weisstein, Eric W. "Fibonacci Chain Map." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FibonacciChainMap.html

Subject classifications