TOPICS
Search

Automorphic Function


An automorphic function f(z) of a complex variable z is one which is analytic (except for poles) in a domain D and which is invariant under a countably infinite group of linear fractional transformations (also known as Möbius transformations)

 z^'=(az+b)/(cz+d).

Automorphic functions are generalizations of trigonometric functions and elliptic functions.


See also

Modular Function, Möbius Transformations, Zeta Fuchsian

Explore with Wolfram|Alpha

References

Ford, L. Automorphic Functions. New York: McGraw-Hill, 1929.Hadamard, J.; Gray, J. J.; and Shenitzer, A. Non-Euclidean Geometry in the Theory of Automorphic Forms. Providence, RI: Amer. Math. Soc., 1999.Shimura, G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton, NJ: Princeton University Press, 1971.Siegel, C. L. Topics in Complex Function Theory, Vol. 2: Automorphic Functions and Abelian Integrals. New York: Wiley, 1988.

Referenced on Wolfram|Alpha

Automorphic Function

Cite this as:

Weisstein, Eric W. "Automorphic Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AutomorphicFunction.html

Subject classifications