holds, where
indicates that the product is over primes which divide
the product . If this conjecture were
true, it would imply Fermat's last theorem
for sufficiently large powers (Goldfeld 1996). This is
related to the fact that the abc conjecture implies that there are at least non-Wieferich
primes
for some constant
(Silverman 1988, Vardi 1991).
The conjecture can also be stated by defining the height and radical of the sum as
(3)
(4)
where
runs over all prime divisors of , ,
and .
Then the abc conjecture states that for all , there exists a constant such that for all ,
(5)
(van Frankenhuysen 2000). van Frankenhuysen (2000) has shown that there exists an infinite sequence of sums or rational integers
with large height compared to the radical,
(6)
with
(7)
for ,
improving a result of Stewart and Tijdeman (1986).
Cox, D. A. "Introduction to Fermat's Last Theorem." Amer. Math. Monthly101, 3-14, 1994.Elkies, N. D.
"ABC Implies Mordell." Internat. Math. Res. Not.7, 99-109,
1991.Goldfeld, D. "Beyond the Last Theorem." The Sciences36,
34-40, March/April 1996.Goldfeld, D. "Beyond the Last Theorem."
Math. Horizons, 26-31 and 24, Sept. 1996.Goldfeld, D. "Modular
Forms, Elliptic Curves and the -Conjecture." http://www.math.columbia.edu/~goldfeld/ABC-Conjecture.pdf.Guy,
R. K. Unsolved
Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 75-76,
1994.Lang, S. "Old and New Conjectures in Diophantine Inequalities."
Bull. Amer. Math. Soc.23, 37-75, 1990.Lang, S. Number
Theory III: Diophantine Geometry. New York: Springer-Verlag, pp. 63-67,
1991.Mason, R. C. Diophantine
Equations over Functions Fields. Cambridge, England: Cambridge University
Press, 1984.Masser, D. W. "On and Discriminants." Proc. Amer. Math. Soc.130,
3141-3150, 2002.Mauldin, R. D. "A Generalization of Fermat's
Last Theorem: The Beal Conjecture and Prize Problem." Not. Amer. Math. Soc.44,
1436-1437, 1997.Nitaq, A. "The abc Conjecture Home Page."
http://www.math.unicaen.fr/~nitaj/abc.html.Oesterlé,
J. "Nouvelles approches du 'théorème' de Fermat." Astérisque161/162,
165-186, 1988.Peterson, I. "MathTrek: The Amazing ABC Conjecture."
Dec. 8, 1997. http://www.maa.org/mathland/mathtrek_12_8.html.Silverman,
J. "Wieferich's Criterion and the abc Conjecture." J. Number Th.30,
226-237, 1988.Stewart, C. L. and Tijdeman, R. "On the Oesterlé-Masser
Conjecture." Mh. Math.102, 251-257, 1986.Stewart,
C. L. and Yu, K. "On the ABC Conjecture." Math. Ann.291,
225-230, 1991.van Frankenhuysen, M. "The ABC Conjecture Implies
Roth's Theorem and Mordell's Conjecture." Mat. Contemp.16, 45-72,
1999.van Frankenhuysen, M. "A Lower Bound in the abc Conjecture."
J. Number Th.82, 91-95, 2000.Vardi, I. Computational
Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 66, 1991.Vojta,
P. Diophantine
Approximations and Value Distribution Theory. Berlin: Springer-Verlag, p. 84,
1987.