where
is a binomial coefficient, , , , , , are constant integers and , , , , , , and are complex numbers (Zeilberger 1990). The method was called
creative telescoping by van der Poorten (1979), and led to the development of the
amazing machinery of Wilf-Zeilberger pairs.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete
Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley,
1994.Koepf, W. "Algorithms for -fold Hypergeometric Summation." J. Symb. Comput.20,
399-417, 1995.Koepf, W. "Zeilberger's Algorithm." Ch. 7
in Hypergeometric
Summation: An Algorithmic Approach to Summation and Special Function Identities.
Braunschweig, Germany: Vieweg, pp. 93-123, 1998.Krattenthaler,
C. "HYP and HYPQ: The Mathematica Package HYP." http://radon.mat.univie.ac.at/People/kratt/hyp_hypq/hyp.html.Paule,
P. "The Paule/Schorn Implementation of Gosper's and Zeilberger's Algorithms."
http://www.risc.uni-linz.ac.at/research/combinat/risc/software/PauleSchorn/.Paule,
P. and Riese, A. "A Mathematica -Analogue of Zeilberger's Algorithm Based on an Algebraically
Motivated Approach to -Hypergeometric Telescoping." In Special Functions,
-Series
and Related Topics, Fields Institute Communications14, 179-210, 1997.Paule,
P. and Schorn, M. "A Mathematica Version of Zeilberger's Algorithm for Proving
Binomial Coefficient Identities." J. Symb. Comput.20, 673-698,
1995.Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. "Zeilberger's
Algorithm." Ch. 6 in A=B.
Wellesley, MA: A K Peters, pp. 101-119, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.Riese,
A. "A Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation."
Electronic J. Combinatorics1, No. 1, R19, 1-16, 1996. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r19.html.van
der Poorten, A. "A Proof that Euler Missed... Apéry's Proof of the Irrationality
of ."
Math. Intel.1, 196-203, 1979.Wegschaider, K. Computer
Generated Proofs of Binomial Multi-Sum Identities. Diploma Thesis, RISC. Linz,
Austria: J. Kepler University, May 1997. http://www.risc.uni-linz.ac.at/research/combinat/risc/software/MultiSum/.Zeilberger,
D. "Doron Zeilberger's Maple Packages and Programs: EKHAD." http://www.math.temple.edu/~zeilberg/programs.html.Zeilberger,
D. "A Fast Algorithm for Proving Terminating Hypergeometric Series Identities."
Discrete Math.80, 207-211, 1990.Zeilberger, D. "A
Holonomic Systems Approach to Special Function Identities." J. Comput. Appl.
Math.32, 321-368, 1990.Zeilberger, D. "The Method of
Creative Telescoping." J. Symb. Comput.11, 195-204, 1991.