for each ,
2, .... A consequence of this result is that the sequence is equidistributed,
and hence dense, in the interval for irrational , where , 2, ... and is the fractional part
of
(Finch 2003).
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math.11, 527-546, 2002.Cassels,
J. W. S. An Introduction to Diophantine Analysis. Cambridge, England:
Cambridge University Press, 1965.Finch, S. R. "Powers of 3/2
Modulo One." §2.30.1 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 194-199,
2003.Kuipers, L. and Niederreiter, H. Uniform
Distribution of Sequences. New York: Wiley, pp. 7 and 226, 1974.Montgomery,
H. L. "Harmonic Analysis as Found in Analytic Number Theory." In Twentieth
Century Harmonic Analysis--A Celebration. Proceedings of the NATO Advanced Study
Institute Held in Il Ciocco, July 2-15, 2000 (Ed. J. S. Byrnes).
Dordrecht, Netherlands: Kluwer, pp. 271-293, 2001.Pólya,
G. and Szegö, G. Problems
and Theorems in Analysis I. New York: Springer-Verlag, 1972.Radin,
C. Miles
of Tiles. Providence, RI: Amer. Math. Soc., pp. 79-80, 1999.Vardi,
I. Computational
Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 155-156
and 254, 1991.Weyl, H. "Über ein Problem aus dem Gebiete der
diophantischen Approximationen." Nachr. Ges. Wiss. Göttingen, Math.-Phys.
Kl., 234-244, 1914. Reprinted in Gesammelte Abhandlungen, Band I. Berlin:
Springer-Verlag, pp. 487-497, 1968.Weyl, H. "Über die
Gleichverteilung von Zahlen mod. Eins." Math. Ann.77, 313-352,
1916. Reprinted in Gesammelte Abhandlungen, Band I. Berlin: Springer-Verlag,
pp. 563-599, 1968. Also reprinted in Selecta Hermann Weyl. Basel, Switzerland:
Birkhäuser, pp. 111-147, 1956.